

43

Supplement: Case Study: Sudoku
For Introduction to C++ Programming

By Y. Daniel Liang

This case study can be presented after Chapter 8, “Multidimensional
Arrays.”

This book teaches you how to program using a wide variety of problems
with various levels of difficulty. We use simple, short, and
stimulating examples to introduce programming and problem-solving
techniques and use interesting and challenging examples to motivate
students in programming. This section presents an interesting problem
of a sort that appears in the newspaper every day. It is a number-
placement puzzle, commonly known as Sudoku.

1 Problem Description

Sudoku is a 9 × 9 grid divided into smaller 3 × 3 boxes (also called
regions or blocks), as shown in Figure 1(a). Some cells, called fixed
cells, are populated with numbers from 1 to 9. The objective is to
fill the empty cells, also called free cells, with numbers 1 to 9 so
that every row, every column, and every 3 × 3 box contains the numbers
1 to 9, as shown in Figure 1(b).

 5 3 7

 6 1 9 5

 9 8 6

 8 6 3

 4 8 3 1

 7 2 6

 6

 4 1 9 5

 8 7 9

 5 3 4 6 7 8 9 1 2

 6 7 2 1 9 5 3 4 8

 1 9 8 3 4 2 5 6 7

 8 5 9 7 6 1 4 2 3

 4 2 6 8 5 3 7 9 1

 7 1 3 9 2 4 8 5 6

 9 6 1 5 3 7 2 8 4

 2 8 7 4 1 9 6 3 5

 3 4 5 2 8 6 1 7 9

 (a) Input (b) Output
Figure 1
(b) is the solution to the Sudoku puzzle in (a).

For convenience, we use value 0 to indicate a free cell, as shown in
Figure 2(a). The grid can be naturally represented using a two-
dimensional array, as shown in Figure 2(b).

44

 5 3 0 0 7 0 0 0 0

 6 0 0 1 9 5 0 0 0

 0 9 8 0 0 0 0 6 0

 8 0 0 0 6 0 0 0 3

 4 0 0 8 0 3 0 0 1

 7 0 0 0 2 0 0 0 6

 0 6 0 0 0 0 0 0 0

 0 0 0 4 1 9 0 0 5

 0 0 0 0 8 0 0 7 9

int grid[9][9] =

 {{5, 3, 0, 0, 7, 0, 0, 0, 0},

 {6, 0, 0, 1, 9, 5, 0, 0, 0},

 {0, 9, 8, 0, 0, 0, 0, 6, 0},

 {8, 0, 0, 0, 6, 0, 0, 0, 3},

 {4, 0, 0, 8, 0, 3, 0, 0, 1},

 {7, 0, 0, 0, 2, 0, 0, 0, 6},

 {0, 6, 0, 0, 0, 0, 2, 8, 0},

 {0, 0, 0, 4, 1, 9, 0, 0, 5},

 {0, 0, 0, 0, 8, 0, 0, 7, 9}

 };

 (a) (b)
Figure 2
A grid can be represented using a two-dimensional array.

2 Problem-Solving Strategy
How do you solve this problem? An intuitive approach is to employ the
following three rules:

Rule 1: Fill in free cells from the first to the last.
Rule 2: Fill in a smallest number possible.
Rule 3: If no number can fill in a free cell, backtrack.

For example, you can fill 1 into grid[0][2], 2 into grid[0][3], 4 into
grid[0][5], 8 into grid[0][6], and 9 into grid[0][7], as shown in
Figure 3(a).

 5 3 1 2 7 4 8 9

 6 1 9 5

 9 8 6

 8 6 3

 4 8 3 1

 7 2 6

 6

 4 1 9 5

 8 7 9

 5 3 1 2 7 4 9 8

 6 1 9 5

 9 8 6

 8 6 3

 4 8 3 1

 7 2 6

 6

 4 1 9 5

 8 7 9

 (a) (b)
Figure 3
The program attempts to fill in free cells.

Now look at grid[0][8]. There is no possible value to fill in this
cell. You need to backtrack to the previous free cell at grid[0][7]
and reset its value. Since grid[0][7] is already 9, no new value is
possible. So you have to backtrack to its previous free cell at
grid[0][6] and change its value to 9. Continue to move forward to set
grid[0][7] to 8, as shown in Figure 3(b). Now there is still no
possible value for grid[0][8]. Backtrack to grid[0][7]: no possible
new value for this cell. Backtrack to grid[0][6]: no possible new

45

value for this cell. Backtrack to grid[0][5] and change it to 6. Now
continue to move forward.

The search moves forward and backward continuously until one of the
following two cases arises:

 All free cells are filled. A solution is found.
 The search is backtracked to the first free cell with no new

possible value. The puzzle has no solution.

Pedagogical NOTE
Follow the link
www.cs.armstrong.edu/liang/animation/SudokuAnimation.html
to see how the search progresses. As shown in Figure
4(a), number 1 is placed in the first row and last
column. This number is invalid, so the next value 2 is
placed in Figure 4(b). This number is still invalid, so
the next value 3 is placed in Figure 4(c). The simulation
displays all the search steps.

 (a) (b)
(c)

Figure 4
The animation tool enables you to observe how the search works
for solving a Sudoku puzzle.

***End NOTE

3 Program Design
The program can be designed as shown in (a) and further refined with
functions as in (b):

46

Read the input for a puzzle;
if (the grid is not valid)
 Report the grid not valid;
else
{
 Search for a solution;
 if (solution found)

Display the solution;
 else
 Report no solution;
}

(a)

int grid[9][9];
readAPuzzle(grid);
if (!isValid(grid))
 Report the grid not valid;
else
{
 if (search(grid))

prindGrid(grid);
 else
 Report no solution;
}

(b)

The readAPuzzle function reads a Sudoku puzzle from the console into
grid. The printGrid function displays the contents in grid to the
console. The isValid function checks whether the grid is valid. These
functions are easy to implement. We now turn our attention to the
search function.

4 Search Algorithm
To better facilitate search on free cells, the program stores free
cells in a two-dimensional array, as shown in Figure 5. Each row in
the array has two columns, which indicate the subscripts of the free
cells in the grid. For example, {freeCellList[0][0],
freeCellList[0][1]} (i.e., {0, 2}) is the subscript for the first free
cell grid[0][2] in the grid and {freeCellList[25][0],
freeCellList[25][1]} (i.e., {4, 4}) is the subscript for free cell
grid[4][4] in the grid, as shown in Figure 5.

Refin

Comment [MSOffice1]: Not
clear what 8.a is. Also,
should be “as shown in”
rather than “as shown”.

47

 5 3 7

 6 1 9 5

 9 8 6

 8 6 3

 4 8 3 1

 7 2 6

 6

 4 1 9 5

 8 7 9

 0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

int freeCellList[][] =

 {{0, 2}, {0, 3}, {0, 5}, {0, 6}, {0, 7}, {0, 8},

 {1, 1}, {1, 2}, {1, 6}, {1, 7}, {1, 8}, {2, 0},

 {2, 3}, {2, 4}, {2, 5}, {2, 6}, {2, 8}, {3, 1},

 {3, 2}, {3, 3}, {3, 5}, {3, 6}, {3, 7}, {4, 1},

 {4, 2}, {4, 4}, {4, 6}, {4, 7}, {5, 1}, {5, 2},

 {5, 3}, {5, 5}, {5, 6}, {5, 7}, {6, 0}, {6, 2},

 {6, 3}, {6, 4}, {6, 5}, {6, 8}, {7, 0}, {7, 1},

 {7, 2}, {7, 6}, {7, 7}, {8, 0}, {8, 1}, {8, 2},

 {8, 3}, {8, 5}, {8, 6}

 };

Figure 5

freeCellList is a two-dimensional array representation for the
free cells.

The search starts from the first free cell with k = 0, where k is the
index of the current free cell being considered in the free-cell list,
as shown in Figure 6. It fills a valid value in the current free cell
and then moves forward to consider the next. If no valid value can be
found for the current free cell, the search backtracks to the
preceding free cell. This process continues until all free cells are
filled with valid values (a solution is found) or the search
backtracks to the first free cell with no solution.

 5 3 7

 6 1 9 5

 9 8 6

 8 6 3

 4 8 3 1

 7 2 6

 6

 4 1 9 5

 8 7 9

freeCellList[0] freeCellList[1] freeCellList[2] …
 {0, 2} {0, 3} {0, 5}

freeCellList

initially k is 0 k

A solution is
found if k
reaches the end k moves forward

and backward

freeCellList[0] is {0, 2},
freeCellList[1] is {0, 3},
freeCellList[2] is {0, 5},
etc.

Figure 6
The search attempts to fill free cells with appropriate values.

The search algorithm can be described as follows:

Step 1: (Initialization) Obtain a freeCellList from a grid, as shown
in Figure 5. Let k denote the index in freeCellList with k initially
0, as shown in Figure 6.

Repeatedly perform Steps 2–4 until search ends with a solution or no
solution

{

48

Step 2: Let grid[i][j] be the current free cell being considered,
where i = freeCellList[k][0] and j = freeCellList[k][1].

Step 3: If grid[i][j] is 0, fill it with 1.

Step 4: Consider three cases:

Case 1: grid[i][j] is valid. If k is the last index in
freeCellList, a solution is found. Otherwise, search moves
forward with k = k + 1.

Case 2: grid[i][j] is invalid and grid[i][j] < 9. Set a new
value for the free cell with grid[i][j] = grid[i][j] + 1.

Case 3: grid[i][j] is invalid and grid[i][j] is 9. If k = 0,

search ends with no solution. Otherwise backtrack with k =
k – 1, reset i = freeCellList[k][0] and j =
freeCellList[k][1], and continue to backtrack if grid[i][j]
is 9. When grid[i][j] < 9, set grid[i][j] = grid[i][j] + 1.

}

5 Implementation
Listing 1 gives the source code for the program.

Listing 1 Sudoku.cpp

#include <iostream>

using namespace std;

void readAPuzzle(int grid[][9]);

bool search(int grid[][9]);

int getFreeCellList(const int grid[][9], int freeCellList[][2]);

void printGrid(const int grid[][9]);

bool isValid(int i, int j, const int grid[][9]);

bool isValid(const int grid[][9]);

int main()

{

 // Read a Sudoku puzzle

 int grid[9][9];

49

 readAPuzzle(grid);

 if (!isValid(grid))

 cout << "Invalid input" << endl;

 else if (search(grid))

 {

 cout << "The solution is found:" << endl;

 printGrid(grid);

 }

 else

 cout << "No solution" << endl;

 return 0;

}

// Read a Sudoku puzzle from the keyboard

void readAPuzzle(int grid[][9])

{

 cout << "Enter a Sudoku puzzle:" << endl;

 for (int i = 0; i < 9; i++)

 for (int j = 0; j < 9; j++)

 cin >> grid[i][j];

}

// Obtain a list of free cells from the puzzle

int getFreeCellList(const int grid[][9], int freeCellList[][2])

{

 // 81 is the maximum number of free cells

50

 int numberOfFreeCells = 0;

 for (int i = 0; i < 9; i++)

 for (int j = 0; j < 9; j++)

 if (grid[i][j] == 0)

 {

 freeCellList[numberOfFreeCells][0] = i;

 freeCellList[numberOfFreeCells][1] = j;

 numberOfFreeCells++;

 }

 return numberOfFreeCells;

}

// Display the values in the grid

void printGrid(const int grid[][9])

{

 for (int i = 0; i < 9; i++)

 {

 for (int j = 0; j < 9; j++)

 cout << grid[i][j] << " ";

 cout << endl;

 }

}

// Search for a solution

bool search(int grid[][9])

{

51

 int freeCellList[81][2]; // Declare freeCellList

 int numberOfFreeCells = getFreeCellList(grid, freeCellList);

 if (numberOfFreeCells == 0)

 return true; // No free cells

 int k = 0; // Start from the first free cell

 while (true)

 {

 int i = freeCellList[k][0];

 int j = freeCellList[k][1];

 if (grid[i][j] == 0)

 grid[i][j] = 1; // Fill the free cell with number 1

 if (isValid(i, j, grid))

 {

 if (k + 1 == numberOfFreeCells)

 { // No more free cells

 return true; // A solution is found

 }

 else

 { // Move to the next free cell

 k++;

 }

 }

 else if (grid[i][j] < 9)

 {

 // Fill the free cell with the next possible value

 grid[i][j] = grid[i][j] + 1;

52

 }

 else

 { // grid[i][j] is 9, backtrack

 while (grid[i][j] == 9)

 {

 if (k == 0)

 {

 return false; // No possible value

 }

 grid[i][j] = 0; // Reset to free cell

 k--; // Backtrack to the preceding free cell

 i = freeCellList[k][0];

 j = freeCellList[k][1];

 }

 // Fill the free cell with the next possible value,

 // search continues from this free cell at k

 grid[i][j] = grid[i][j] + 1;

 }

 }

 return true; // A solution is found

}

// Check whether grid[i][j] is valid in the grid

bool isValid(int i, int j, const int grid[][9])

{

 // Check whether grid[i][j] is valid at the i's row

53

 for (int column = 0; column < 9; column++)

 if (column != j && grid[i][column] == grid[i][j])

 return false;

 // Check whether grid[i][j] is valid at the j's column

 for (int row = 0; row < 9; row++)

 if (row != i && grid[row][j] == grid[i][j])

 return false;

 // Check whether grid[i][j] is valid in the 3-by-3 box

 for (int row = (i / 3) * 3; row < (i / 3) * 3 + 3; row++)

 for (int col = (j / 3) * 3; col < (j / 3) * 3 + 3; col++)

 if (row != i && col != j && grid[row][col] == grid[i][j])

 return false;

 return true; // The current value at grid[i][j] is valid

}

// Check whether the fixed cells are valid in the grid

bool isValid(const int grid[][9])

{

 for (int i = 0; i < 9; i++)
 for (int j = 0; j < 9; j++)
 if (grid[i][j] < 0 || grid[i][j] > 9 ||
 (grid[i][j] != 0 && !isValid(i, j, grid)))
 return false;

 return true; // The fixed cells are valid
}

}

Sample Output>
Enter a puzzle:
0 6 0 1 0 4 0 5 0

54

0 0 8 3 0 5 6 0 0

2 0 0 0 0 0 0 0 1

8 0 0 4 0 7 0 0 6

0 0 6 0 0 0 3 0 0

7 0 0 9 0 1 0 0 4

5 0 0 0 0 0 0 0 2

0 0 7 2 0 6 9 0 0

0 4 0 5 0 8 0 7 0

The solution is found:

9 6 3 1 7 4 2 5 8
1 7 8 3 2 5 6 4 9
2 5 4 6 8 9 7 3 1
8 2 1 4 3 7 5 9 6
4 9 6 8 5 2 3 1 7
7 3 5 9 6 1 8 2 4
5 8 9 7 1 3 4 6 2
3 1 7 2 4 6 9 8 5
6 4 2 5 9 8 1 7 3

The program invokes the readAPuzzle() function (line 15) to read a
Sudoku puzzle in a two-dimensional array grid. There are three
possible outputs from the program:

 The input is invalid (line 17).
 A solution is found (line 19).
 No solution is found (line 24).

The getFreeCellList function (lines 41–56) returns a two-dimensional
array storing the free-cell positions. freeCellList[i][j] indicates a
free cell at row index i and column index j.

The search function invokes getFreeCellList to find all free cells
(line 72). It then starts search from the first free cell with k = 0
(line 77), where k is the position of the current free cell being
considered in the free-cell list, as shown in Figure 6.

The value in a free cell starts with 1 (line 83). If the value is
valid, the next cell is considered (line 93). If the value is not
valid, its next value is considered (line 99). If the value is already
9, the search is backtracked (lines 103–113). All the backtracked
cells become free again and their values are reset to 0 (line 109). If
the search backtracks to the free-cell list at position k and the
current free-cell value is not 9, increase the value by 1 (line 117)
and continue the search.

The search function returns true when the search advances but no more
free cells are left (line 89). A solution is found.

55

The search returns false when the search is backtracked to the first
cell (line 107) and all possible values are exhausted for the cell. No
solution can be found.

The isValid(i, j, grid) function checks whether the current value at
grid[i][j] is valid. It checks whether grid[i][j] appears more than
once at row i (lines 128–130), at column j (lines 133–135), and in the
3 × 3 box (lines 138–141).

How do you locate all the cells in the same box? For any grid[i][j],
the starting cell of the 3 × 3 box that contains it is grid[(i / 3) *
3][(j / 3) * 3], as illustrated in Figure 7.

For any grid[i][j] in this 3-by-3 box, its starting cell
is grid[3*(i/3)][3*(j/3)] (i.e., grid[0][6]). For
example, for grid[2][8], i=2 and j=8, 3*(j/3)=0 and
3*(j/3) =6.

grid[0][6]

grid[6][3]

For any grid[i][j] in this 3-by-3 box, its
starting cell is grid[3*(i/3)][3*(j/3)]
(i.e., grid[6][3]). For example, for
grid[8][5], i=8 and j=5, 3*(i/3)=6 and
3*(j/3) =3.

Figure 7
The location of the first cell in a 3 × 3 box determines the
locations of other cells in the box.

With this observation, you can easily identify all the cells in the
box. Suppose grid[r][c] is the starting cell of a 3 × 3 box; the cells
in the box can be traversed in a nested loop as follows:

// Get all cells in a 3 by 3 box starting at grid[r][c]

for (int row = r; row < r + 3; row++)

 for (int col = c; col < c + 3; col++)

 // grid[row][col] is in the box

Note that there may be multiple solutions for an input. The program
will find one such solution. You may modify the program to find all
solutions in Programming Exercise 8.17.

It is cumbersome to enter 81 numbers from the keyboard. You may store
the input in a file, say sudoku.txt, and compile and run the program
using the following command:

g++ Sudoku.cpp –o Sudoku.exe
Sudoku.exe < sudoku.txt

56

