

1

Supplement: Visual C++ Debugging

For Introduction to C++ Programming
By Y. Daniel Liang

Note: The screen shots are taken from VC++ 2010. It is the same
for the later version.

1 Introduction

The debugger utility is integrated in VC++. You can pinpoint
bugs in your program with the help of the VC++ debugger without
leaving the IDE. The VC++ debugger enables you to set
breakpoints and execute programs line by line. As your program
executes, you can watch the values stored in variables, observe
which functions are being called, and know what events have
occurred in the program. Let us use Listing 2.11,
ShowCurrentTime.cpp, to demonstrate debugging. Create a new
program named ShowCurrentTime.cpp. The source code for
ShowCurrentTime.cpp can be obtained from the book.

2 Setting Breakpoints

You can execute a program line by line to trace it, but this is
time-consuming if you are debugging a large program. Often, you
know that some parts of the program work fine. It makes no sense
to trace these parts when you only need to trace the lines of
code that are likely to have bugs. In cases of this kind, you
can use breakpoints.

A breakpoint is a stop sign placed on a line of source code that
tells the debugger to pause when this line is encountered. The
debugger executes every line until it encounters a breakpoint,
so you can trace the part of the program at the breakpoint.
Using the breakpoint, you can quickly move over the sections you
know work correctly and concentrate on the sections causing
problems.

There are several ways to set a breakpoint on a line. One quick
way is to click the cutter of the line on which you want to put
a breakpoint. You will see the line highlighted, as shown in
Figure 1. You also can set breakpoints by choosing Run, Add
Breakpoint. To remove a breakpoint, simply click the cutter of
the line.

As you debug your program, you can set as many breakpoints as
you want, and can remove breakpoints at any time during
debugging. The project retains the breakpoints you have set when
you exit the project. The breakpoints are restored when you
reopen it.

2

Figure 1

A breakpoint is set in ShowCurrentTime.cpp.

3 Starting the Debugger

To start debugging, set a break point at the first line in the
main function and choose Debug, Start (or F5). If the program
compiles without problems, debugging starts. You will see two
debugging windows (Autos and Call Stack) appearing at the
bottom, as shown in Figure 2. If these windows do not appear,
choose Debug, Windows to open these windows.

3

Figure 2

The debugging windows appear in the IDE.

• The Autos window displays variables and expressions from
the current line of code, and the preceding line of code.
See Figure 3. This window has tabs Locals, Thread, Module,
and Watch at the bottom.

• The Locals tab (see Figure 4) displays all local variables
in the current block of code. If you are inside of a
function, the locals tab will display the function
parameters and locally defined variables.

• The Watch tab (see Figure 5) display a variable state until
you explicitly remove it from the window. You can add a
variable to the watch window by right clicking a variable
and selecting “Add Watch”.

4

Figure 3

The Autos window displays the variable in the current line.

5

Figure 4

The Locals window displays all variables in the block.

6

Figure 5

The Watchs window displays the variables you want to watch
for.

4 Controlling Program Execution

The program pauses at a line called the current execution point.
This line is highlighted and has a yellow arrow to the left. The
execution point marks the next line of source code to be
executed by the debugger.

When the program pauses at the execution point, you can issue
debugging commands to control the execution of the program. You
also can inspect or modify the values of variables in the
program.

When VC++ is in the debugging mode, the Debug menu contains the
debugging commands (see Figure 6). Most of the commands also
appear in the toolbar under the message pane. The toolbar
contains additional commands that are not in the Run menu. Here
are the commands for controlling program execution:

• Step Over executes a single statement. If the statement
contains a call to a function, the entire function is
executed without stepping through it.

7

• Step Into executes a single statement or steps into a
function.

• Step Out executes all the statements in the current
function and returns to its caller.

Figure 6

The debugging commands appear under the Degub menu.

NOTE: The debugger is an indispensable, powerful
tool that boosts your programming productivity. It
may take you some time to become familiar with it,
but your investment will pay off in the long run.

	Supplement: Visual C++ Debugging
	For Introduction to C++ Programming
	By Y. Daniel Liang
	1 Introduction
	2 Setting breakpoints
	Figure 1
	3 Starting the Debugger
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	4 Controlling Program Execution
	Figure 6

