Chapter 2 Elementary Programming
1.
area5.2

int v1;

double v2;

cin >> v1 >> v2;

2. The printout is 5
3. Valid identifiers: x, X, apps, main, count, radius

Invalid identifiers: $4, a++, --a, 4#R, #44, int (a keyword, not identifier)
($4 is illegal in ANSI, but fine in Visual C++)

Keywords: int

5.

 1 #include<iostream>

 2 using namespace std;

 3

 4 int main()

 5 {

 6 int i = k + 1;

 7 cout << i << endl;

 8

 9 i = 1;

 10 cout << i << endl;

 11

 12 return 0;

 13 }

6.

 1 #include <iostream>

 2 using namespace std;

 3

 4 int main()

 5 {

 6 int i = j = k = 1; // j and k are not defined
 7

 8 return 0;

 9 }

7.
There are three benefits of using named constants: (1) you don’t have to repeatedly type the same value; (2) the value can be changed in a single location, if necessary; (3) the program is easy to read.

const int SIZE = 20;

8.
double miles = 100;

const double KILOMETERS_PER_MILE = 1.609;

double kilometer = KILOMETERS_PER_MILE * miles;

cout << kilometer << endl;

The value of kilometer is 160.9.

9.

short normally takes 2 bytes.

int normally takes 4 bytes.

float normally takes 4 bytes.

double normally takes 8 bytes.

short requires least amount of memory.
You can use the sizeof function to find the size of these types on your machine.

10. They are all correct.

11.

5.2534e+1, 0.52534e+2, 525.34e-1 are the same as 52.534
12.

56 % 6 is 2

78 % 4 is 2
34 % 5 is 4

34 % 15 is 4
5 % 1 is 0
1 % 5 is 1

13.

7. (2 + 100) % 7 = 4. So it is Thursday.
14.

25/4= 6. If you want the quotient to be a floating-point number, rewrite it as 25.0/4.0.
15.

8

10

4

5

16.

Yes, the statements are correct. The printout is

25 / 4 is 6

25 / 4.0 is 6.25

3 * 2 / 4 is 1

3.0 * 2 / 4 is 1.5

17.

pow(2, 3.5)

18.

1.0 * m * r * r

19.
a. 4.0 / (3.0 * (r + 34)) – 9 * (a + b * c) + (3.0 + d * (2 + a)) / (a + b * d)

 b. 5.5 * pow(r + 2.5, 2.5 + t)

20.

long totalSeconds = time(0) returns the seconds since Jan 1, 1970. totalMills % 60 returns the current second.

totalMills % (60 * 60) returns the current minute. totalMills % (60 * 60 * 24) returns the current hour.

21.

-1

-6
-3
22.

a, b and c are true.

23.

7
6

7

7

24.

5

6

5

5

25.

Yes. Different types of numeric values can be used in the same computation through automatic numeric conversions.

26.

 The fractional part is truncated. Casting does not change the variable being cast.

27.

f is 12.5

i is 12

28.

The answer is 11

Here is the reason:

tax = purchaseAmount * 0.06 = 197.556 * 0.06 = 11.85336

tax * 100 = 1185.336

static_cast<int>(tax * 100) = 1185

1185 / 100 = 11

29.

2.5

2

30.

(-b + pow(b * b – 4 * a * c, 0.5)) / (2 * a)

