Chapter 5 Loops

1. count < 100 always true at Point A. count < 100 always false at Point C. count < 100 is sometimes true or sometimes false at Point B.

2. It would be wrong if it is initialized to a value between 0 and 100, because it could be the number you attempt to guess.

3. (a) Infinite number of times.

(b) The loop body is executed nine times. The printout is 2, 4, 6, 8 on separate lines.
 (c) The loop body is executed nine times. The printout is 3, 5, 7, 9 on separate lines.

4.

max is 5

number 0

5.

x is -2147483648

The reason:

When a variable is assigned a value that is too large (in size) to be stored, it causes overflow.

2147483647 + 1 is actually -2147483648

6.

To test the end of file, invoke the eof() function on the input object.

7.

max is 5

number 0

8.
The difference between a do-while loop and a while loop is the order of evaluating the continuation-condition and executing the loop body. In a while loop, the continuation-condition is checked and then, if true, the loop body is executed. In a do-while loop, the loop body is executed for the first time before the continuation-condition is evaluated.

int sum = 0;

int number;

cin >> number;

do
{

 sum += number;

 cin >> number;

} while (number != 0);
9. num is redeclared inside the loop.

10.
Same. When the i++ and ++i are used in isolation, their effects are same.

11.
The three parts in a for loop control are as follows:

The first part initializes the control variable.

The second part is a Boolean expression that determines whether the loop will repeat.

The third part is the adjustment statement, which adjusts the control variable.

for (int i = 1; i <= 100; i++)

 cout << i << endl;

12.

sum is 14

count is 4

13.
The loop keeps doing something indefinitely.

14.
No. The scope of the variable is inside the loop.

15.
while loop:
long sum = 0;

int i = 0;

while (i <= 1000)

{

 sum += i++;

}

do-while loop:

long sum = 0;
int i = 0;

do

{

 sum += i++;

}

while (i <= 1000);

16.

(A)

n times

(B)

n times

(C)

n-5 times

(D)

The ceiling of (n-5)/3 times

17.
Yes. The advantages of for loops are simplicity and readability. Compilers can produce more efficient code for the for loop than for the corresponding while loop.

18.
Yes.

for (int i = 1; sum < 10000; i++)

 sum = sum + i;

19. Line 3, remove the last semicolon (;)

Line 6, remove the last semicolon (;)
Line 11, remove the last semicolon (;)

Line 19, add a semicolon (;) at the end.

20. Line 3, remove the last semicolon (;)

21. 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45

22.

Tip for tracing programs:

Draw a table to see how variables change in the program. Consider (a) for example.

i j output

1 0 0

1 1

2 0 0

2 1 1

2 2

3 0 0

3 1 1

3 2 2

3 3

4 0 0

4 1 1

4 2 2

4 3 3

4 4

(A).

0 0 1 0 1 2 0 1 2 3

 (B).

2 ****

3 2 ****

4 3 2 ****

(C).

1xxx2xxx4xxx8xxx16xxx

1xxx2xxx4xxx8xxx

 1xxx2xxx4xxx

 1xxx2xxx

1xxx

 (D).

1G

1G3G

1G3G5G

1G3G5G7G

1G3G5G7G9G

23. No. Try n1 = 3 and n2 =3.

24. Yes. When a number is assigned to a variable of char, it is automatically cast to a character.

25.
how many times the loop body is executed for a decimal number 245? 2 times

how many times the loop body is executed for a decimal number 3245? 3 times

26.
The keyword break is used to exit the current loop. The program in (A) will terminate. The output is Balance is 1.

The keyword continue causes the rest of the loop body to be skipped for the current iteration. The while loop will not terminate in (B).

27.
If a continue statement is executed inside a for loop, the rest of the iteration is skipped, then the action-after-each-iteration is performed and the loop-continuation-condition is checked. If a continue statement is executed inside a while loop, the rest of the iteration is skipped, then the loop-continuation-condition is checked.

Here is the fix:

 int i = 0;

while (i < 4)
{

 if (i % 3 == 0)
 {

 i++;

 continue;

 }

 sum += i;

 i++;

 }
28.

#include <iostream>

using namespace std;

int main()

{

 int sum = 0;

 int number = 0;

 while (number < 20 && sum < 100)

 {

 number++;

 sum += number;

 }

 cout << "The number is " << number << endl;

 cout << "The sum is " << sum << endl;

 return 0;

}
#include <iostream>

using namespace std;

int main()

{

 int sum = 0;

 int number = 0;

 while (number < 20) {

 number++;

 if (number != 10 && number != 11) sum += number;

 }

 cout << "The sum is " << sum;

 return 0;

}
29. (a) After the break statement in (a) is executed, the statement cout << i << endl is executed.

1

2

1

2

2

3

(b) After the continue statement in (b) is executed, the statement j++ is executed.

1

2

1

2

2

3

