Chapter 9 Objects and Classes

1.
See the section "Defining Classes for Objects."

2.
Constructors are special kinds of functions that are called when creating an object. Constructors do not have a return type—not even void.

3. To declare an object using the no-arg constructor, use ClassName objectName;

To declare an object using the constructor with arguments, use ClassName objectName(arguments);

4. Once an object name is declared, it cannot be reassigned to reference another object. Object names are like constants.

5. 6 6

6. (a) Line 3 is wrong. It should be

Circle c1;

(b) Line 4 is wrong. The object cannot be declared again.

7. A data field cannot be initialized when it is declared in C++.

8. The first statement declares an object of Circle. The object is created using the Circle’s no-arg constructor.

The second statement is incorrect.

9. The first statement declares an object of Circle. The object is created using the Circle’s no-arg constructor.

For the second statement, the left-hand side of the = sign does the same as the first statement and the right-hand side creates an anonymous object using the Circle’s no-arg constructor and copies the object to c.

10. Declare all data fields, constructors, and function prototypes in the interface and implement functions in a separate file.

11. (a) output is 5

(b) Output is 8

12. If your program include two header files and one of which actually include the other, then your program will receive the multiple declaration error. To prevent it, use the #ifndef directive.

13. The #define directive defines a constant.

Implement all the functions in the header file.
class Circle

{

public:

 Circle()

 {

 radius = 1;

 };

 Circle(double newRadius)

 {

 radius = newRadius;

 }

 double getArea()

 {

 return radius * radius * 3.14159;
 };

 double getRadius()

 {

 return radius;
 };

 void setRadius(double newRadius)

 {

 radius = newRadius;

 };

private:

 double radius;

};

15.

You cannot use c.radius, since radius is a private data field.

16. Accessor function is for retrieving private data value and mutator function is for changing private data value. The naming convention for accessor function is getDataFieldName() for non-boolean values and isDataFieldName() for bool values. The naming convention for mutator function is setDataFieldName(value).

17. Two benefits: (1) for protecting data and (2) for easy to maintain the class.

18. Yes.

17.

100000

?

Explanation: Loan’s no-arg constructor is used to initialize loan, but i is not initialized.

