Chapter 11 Pointers and Dynamic Memory Management

1.
You declare a pointer variable using the syntax like this:

dataType *pVar;

Local pointer variables are not initialized.

2. To obtain a variable’s address, put the ampersand sign & in front of the variable.

&variable
Line 2 is wrong. It should be int *px = &x;

Line 4 should be

cout << "x is " << *px;

3.

30

40

4.

8

5.

0020F86 (a random memory address)

ABCD

A

6.
Wrong type. x is double, but *px is a pointer variable for int variables.

7. No. Should be declared as

double* p1;

double* p2;

8.

typedef double* doublePointer;

9. Line 4 is wrong, because p is a constant pointer.

10. Line 5 is wrong because p points to a constant data.

11.
p + 1 will be 100 + sizeof(int)

12.
p++ means to increase the pointer by sizeof(int).

 *p++ means to increase the pointer by sizeof(int) and return the contents of the new address.

(*p)++ means to increase the value stored at the address pointed by p.

13.

*p is 1
*(p+1) is 2

p[0] is 1

p[1] is 2

14. p is declared as a pointer, but it is not initialized.

15.
Dallas

D

a

l

l

16. D

Dallas

 D

17.

i is 1

j is 2

k is 2

18. No. Array list is created as a local variable in f, the array is destroyed after function f is invoked.

19.

3

4

2

0017F9CC (an address for list + 6)

6

20. You create the memory space for a double value using

double *pValue = new double;

Access it using *pValue

Destroy it using

Delete pValue;

21. Yes.

22. You might inadvertently reassign a pointer before deleting the memory to which it points. This causes memory leak.
23. It should be

 double *x = new double[30];

 // ...

 delete [] x;

24.

You have to assign an address to p1. d is not an address.

25.

p1 does not point to a dynamically allocated data. So it cannot be deleted.

26.

You have to assign an address to p1. 5.4 is not an address.

27.

p1 and p2 point to the same data, but it was destroyed using delete p1. So you cannot access it later using *p2.

28. (a) Line 4 should be string *p = &s1; (b) and (c) are correct.
29. To create a dynamic object, use the new operator.

To delete an object, use the delete operator. In (a), the pointer points to a string, but the string was not created dynamically, so you cannot you the delete operator to delete it.
30. Line 8 creates an anonymous object dynamically on the heap, which causes memory leak. You should not create an anonymous object using the new operator.
31.

// Construct a circle object

Circle::Circle(double radius)

{

 this->radius = radius; // or (*this).radius = radius;

}

32. Every class has a destructor. Destructors are named the same as constructors, but you must put a tilde character (~) in front of it. A destructor cannot be overloaded. You may redefine a destructor. You cannot invoke a destructor explicitly. It is invoked automatically when an object is destroyed.

object with id 3 is destroyed
object with id 2 is destroyed
object with id 1 is destroyed
33. Since children is created dynamically, it will cause memory leak if the memory pointed by children is not destroyed after an object of Person is destroyed.

 ~Person()

 {

 delete [] children;

 }

34. It is NULL when a Course object is created.

35. Because students point to an array.

36. Every class a copy constructor. It is named as

ClassName(ClassName &)

A copy constructor cannot be overloaded. You can redefine a copy constructor to perform a customized copy.

DEFG

DEFG

37. Yes. They are the same, but s1 = s2 is better than s1 = string(s2), because the latter creates a temporary string object for s2, and then copied to s1.

The copy constructor can be customized as follows:

 Person(Person &course)

 {

 numberOfChildren = course.numberOfChildren;

 numberOfChildren = course.numberOfChildren;

 children = new string[20];

 }

