Chapter 15 Inheritance and Polymorphism

1.
False.

A derived class is an extension of a base class and normally contains more details information than its base class.

2.
Yes.

3.
The following lines are erroneous:

{

 radius = radius; // Must use this->radius = radius
}

class B: public Circle (missing public)

{

 length = length; // Must use this->length = length
}

{

 Circle(radius); // Must use super(radius)

 length = length; // Must use this.length = length

}

 double getArea()

 {

 return getArea() * length; // Must be Circle::getArea() * length
 }

4.

Fasle. If a derived class’s constructor explicitly invoke a base class’s constructor, the base class’s no-arg constructor is not invoked.

5.
(a) The printout is

Parent’s no-arg constructor is invoked

(b) The default constructor of Child attempts to invoke the default of constructor of Parent, but class Parent's default constructor is not defined.

6.

Parent’s no-arg constructor is invoked

Child’s no-arg constructor is invoked

Parent’s no-arg constructor is invoked

Child’s no-arg constructor is invoked

Child’s destructor is invoked

Parent’s destructor is invoked

Child’s destructor is invoked

Parent’s destructor is invoked

7.

You should implement the copy constructor and assignment operator by invoking the copy constructor or the assignment operator function in the base class to copy the appropriate data fields in the base class.

8.

No. When a destructor for a derived class is invoked, it automatically invokes the destructor in the base class. So, there is no need to explicitly invoke the destructor in the base class. The destructor in the derived class only needs to destroy the dynamically created memory in the derived class.

9.

Overloading a function is a way to provide more than one function with the same name but with different signatures to distinguish them. To redefine a function, the function must be defined in the derived class using the same signature and same return type as in its base class.
10.
All false.

(1) No. You can only override accessible functions.

(2) Yes.

(3) No.

11.
A class defines a type. A type defined by a subclass is called a subtype, and a type defined by its superclass is called a supertype. Polymorphism means that a variable of a supertype can refer to a subtype object.

12.

a.

invoke f from Parent
invoke f from Parent
invoke f from Child
invoke f from Parent
b.

invoke f from Parent

invoke f from Parent

invoke f from Child

invoke f from Parent

c.

invoke f from Parent

invoke f from Parent

invoke f from Child

invoke f from Child

13.

Matching a function signature and binding a function implementation are two separate issues. The declared type of the variable decides which function to match at compile time. This is static binding. The compiler finds a matching function according to parameter type, number of parameters, and order of the parameters at compile time. A virtual function may be implemented in several derived classes. C++ dynamically binds the implementation of the function at runtime, decided by the actual class of the object referenced by the variable. This is dynamic binding.

14.

No. You also need to use reference for the object that invokes the function.

15.

(a)

Person

Student

(b)

Person

Person

16.

No. it is more efficient without declaring it virtual, because it takes more time and system resource to bind virtual functions dynamically at runtime.
You should only declare a function virtual if it is intended to be redefined by derived classes.

17.
If a member is declared private in a class, can it be accessed from other classes? No.

If a member is declared protected in a class, can it be accessed from other classes? Only accessible from derived classes.

If a member is declared public in a class, can it be accessed from other classes? Yes.

18.
Just like a virtual function except that you have to add

= 0;

at the end of the function prototype.

19. A is an abstract class. You cannot create an instance from an abstract class.

20.

invoke f from B

invoke m from D

21.
The benefits are for generic programming. A variable of GeometricObject type can use the getArea and getPerimeter functions at compilation time.

22.
Upcasting is to cast a pointer from a derived class type to a base class type. Downcasting is to cast a pointer from a base class type to a derived class type.

23.
If a pointer points to an object of a derived class, but it is declared as a base class type, you need to cast the pointer to the derived class type in order to access the members defined in the derived class.

24. 0.
25. (1) m() is not a member of Child.

(2) A is not defined as a class with virtual functions.

(3) Yes.

26.

It is a good practice to always declare destructors virtual to ensure that a derived class’ constructor is called when an object of the derived class is deleted.

