Chapter 17 Recursion

1.
A function that calls itself. One or more base cases (the simplest case) are used to stop recursion. Every recursive call reduces the original problem, bringing it increasingly close to a base case until it becomes that case.

2. (a) The output is 15 (5 + 4 + 3 + 2 + 1 = 15)

(b) 7654321

(a) base case: n is 1, recursive call f(n – 1)

(b) base case: n <= 0, recursive call f(n / 10)

3.
f(n) = 2 if n = 1

 f(n) = 2 * 2^(n-1) for (n > 1)

4.
f(n) = x if n = 1

 f(n) = x * x^(n-1) for (n > 1)

5.
f(n) = 1 if n = 1

 f(n) = f(n-1) + n for (n > 1)

6. six times. (base case factorial(0))

7. 25 times (Why?

number of time fib is invoked in fib(0) =

1

number of time fib is invoked in fib(1) =

1

number of time fib is invoked in fib(2) =

1+ number of time fib is invoked in fib(1)+number of time fib is invoked in fib(2) =1+1+1=3

number of time fib is invoked in fib(3) =

1+ number of time fib is invoked in fib(1)+number of time fib is invoked in fib(2) = 1+1+3=5

number of time fib is invoked in fib(4) =

1+ number of time fib is invoked in fib(2)+number of time fib is invoked in fib(3) = 1+3+5=9

number of time fib is invoked in fib(5) =

1+ number of time fib is invoked in fib(3)+number of time fib is invoked in fib(4) = 1+5+9=15

number of time fib is invoked in fib(6) =

1+ number of time fib is invoked in fib(4)+number of time fib is invoked in fib(5) = 1+9+15=25

8. (a) The output is 5 4 3 2 1

(b) The output is 1 2 3 4 5
9. (a) n is double. There is no guarantee that n != 0 will be eventually false.

(b) Infinite recursion due to new Test() inside the constructor Test().

10. omitted.

11. omitted.

12. an overloaded function with additional parameters.

13. 2^5 – 1

· Any recursive functions can be converted into a non-recursive function. (TRUE)
· Recursive function usually takes more time and memory to execute than non-recursive functions. (TRUE)
· Recursive functions are always simpler than non-recursive functions. (FALSE)
· There is always a condition statement in a recursive function to check whether a base case is reached. (TRUE)
14. When a function is invoked, its contents are placed into a stack. If a function is recursively invoked, it is possible that the stack space is exhausted. This causes stack overflow.

15. The isPalindrome function in Listing 17.4, sort function in Listing 7.5, and binarySearch function in Listing 17.6 are tail-recursive.

 /** Return the Fibonacci number for the specified index */

 int fib(int index)

 {
 return fib(index, 1, 0);
 }
 /** Auxiliary tail-recursive function for fib */

 int fib(int index, int next, int result)

 {
 if (index == 0)
 return result;
 else
 return fib(index - 1, next + result, next);
 }

