Chapter 23 STL Algorithms


1.
The STL algorithms are not defined in a container class such as vector, list, or set. They are separate from the containers. They are generic for all containers. All STL algorithms are defined in the <algorithm> header except the four numeric algorithms accumulate, adjacent_difference, inner_product, and partial_sum.


2.
The STL algorithms can be classified into four types: nonmodifying algorithms, modifying algorithms, numeric algorithms, and are data fields must be initialized explicitly. Otherwise, their values are unpredictable. 
3. The copy algorithm copies element from a sequence to another. It returns an iterator that points to the element past the last element copied. The output of the code is:


intVector: 1 2 3

4. intVector has 5 elements and values has 7 elements. You cannot copy all elements in values to intVector. (Some compiler will not report errors.)
5. The fill and fill_n functions fill a value in a sequence. The output for the code is

values: 1 2 9 9 5
6. The functions generate and generate_n fill a sequence with a value returned from a function. The output for the code is:



values: 1 20 21 4 5
7.
The function remove removes the elements from a sequence that matches the specified value.

The function remove_if removes all the elements from a sequence such that boolFunction(element) is true.

The function remove_copy copies all the elements in the sequence to the target container, except those whose value matches the specified value.

The function remove_copy_if copies all the elements in the sequence to the target container, except those for which boolFunction(element) is true.

The output for the code is:



values: 1 2 3 4 1 1 1

8.

The replace function replaces all occurrence of a given value with a new value in a sequence.

The replace_if function replaces all occurrence of the element for which boolFunction(element) is true.

The function replace_copy replaces the occurrence of a given value with a new value and copies the result to the target container.

The function replace_copy_if replaces the occurrence of the element for which boolFunction(element) is true, with a new value, and copies all the elements in the sequence to the target container.

The output for the code is:

values: 1 2 3 4 999 1 1 


9.


The find function searches for an element.

The find_if function searches for an element such that boolFunction(element) is true.

The find_end function is to search a subsequence.
The function find_first_of searches the first common element in two sequences.

All these functions return the iterator that points to the first matching element or matching sequence.


10.

The search function is to search a subsequence.



The search_n function searches for consecutive occurrence of a value in the sequence. 
The function search is similar to the function find_end. Both searches for a subsequence. The find_end finds the last match, but search finds the first match. 

11.




The return type for the sort algorithm is void. The return type for the binary search algorithm is bool. 
The sort function requires random-access iterators. You can apply it to sort an array, vector, or deque, but not to a list, set, or map.

The binary_search function requires forwardIterator. It can be applied to all first-class containers.


12.


The adjacent_find function looks for first occurrence of adjacent elements of equal value or satisfying boolFunction(element).

The merge function merges two sorted sequences into a new sequence.

The inplace_merge function merges the first part of the sequence with the second part; assume that the two parts contain sorted consecutive elements.

The output is

values: 4 4 5 1 1


13.


The reverse function reverses the elements in a sequence. The reverse_copy function copies the elements in one sequence to the other in reverse order. The reverse_copy function does not change the contents in the source container. 


14.


The rotate function rotates the elements in a sequence with a specified new first element.

The rotate_copy function is similar to rotate except that it copies the result to a target sequence.

The output of the code is

values: 5 1 1 1 2 3 4 4 


15.


The swap function swaps the values in two variables. The iter_swap function swaps the values pointed by the iterators. The swap_ranges function swaps two sequences.


16.


The count function counts the occurrence of a given value in the sequence. The count_if function counts the occurrence of the elements such that boolFunction(element) is true.


17.


The max_element and min_element functions are to obtain the maximum element and minimum element in a sequence.


18.


The random_shuffle function randomly reorders the elements in a sequence.


19.


The for_each function is used to process each element in a sequence by applying a function.

The transform function applies a function on each element in the sequence and copy the result to a target sequence. 


20.


The union of the two sets are {1, 2, 3, 4, 5, 8, 9, 10}

The difference of the two sets are {1, 3, 5}

The intersection of the two sets are {2, 4}

The symmetric difference of the two sets are {1, 3, 5, 8, 9, 10}


21.


The accumulate of array1 is 1 + 2 + 3 + 4 + 5.

The adjacent difference of array1 is {1, 2 – 1, 3 – 2, 4 – 3, 5 – 4}.

The partial sum of array1 is {1, 1 + 2, 1 + 2 + 3, 1 + 2 + 3 + 4, 1 + 2 + 3 + 4 + 5}.

The inner product of array1 and array2 is 

1*2 + 2*4 + 3*8 + 4*8 + 5*10

