
Objectives
■■ To get an overview of multithreading (§32.2).

■■ To develop task classes by implementing the Runnable interface
(§32.3).

■■ To create threads to run tasks using the Thread class (§32.3).

■■ To control threads using the methods in the Thread class (§32.4).

■■ To control animations using threads and use Platform.runLater to
run the code in the application thread (§32.5).

■■ To execute tasks in a thread pool (§32.6).

■■ To use synchronized methods or blocks to synchronize threads to avoid
race conditions (§32.7).

■■ To synchronize threads using locks (§32.8).

■■ To facilitate thread communications using conditions on locks (§§32.9
and 32.10).

■■ To use blocking queues (ArrayBlockingQueue, LinkedBlocking-
Queue, and PriorityBlockingQueue) to synchronize access to a
queue (§32.11).

■■ To restrict the number of concurrent accesses to a shared resource using
semaphores (§32.12).

■■ To use the resource-ordering technique to avoid deadlocks (§32.13).

■■ To describe the life cycle of a thread (§32.14).

■■ To create synchronized collections using the static methods in the
Collections class (§32.15).

■■ To develop parallel programs using the Fork/Join Framework (§32.16).

Multithreading
and Parallel
Programming

CHAPTER

32

M32_LIAN0182_11_SE_C32.indd 1 5/22/17 12:34 PM

32-2 Chapter 32   Multithreading and Parallel Programming

32.1  Introduction
Multithreading enables multiple tasks in a program to be executed concurrently.

One of the powerful features of Java is its built-in support for multithreading—the concurrent
running of multiple tasks within a program. In many programming languages, you have to
invoke system-dependent procedures and functions to implement multithreading. This chapter
introduces the concepts of threads and how multithreading programs can be developed in Java.

32.2  Thread Concepts
A program may consist of many tasks that can run concurrently. A thread is the flow
of execution, from beginning to end, of a task.

A thread provides the mechanism for running a task. With Java, you can launch multiple
threads from a program concurrently. These threads can be executed simultaneously in multi-
processor systems, as shown in Figure 32.1a.

Point
Key

multithreading

Point
Key

thread

task

Figure 32.1  (a) Multiple threads running on multiple CPUs. (b) Multiple threads share a
single CPU.

Thread 1

Thread 3

Thread 2

(a)

Thread 1

Thread 3

Thread 2

(b)

In single-processor systems, as shown in Figure 32.1b, the multiple threads share CPU time,
known as time sharing, and the operating system is responsible for scheduling and allocating
resources to them. This arrangement is practical because most of the time the CPU is idle. It
does nothing, for example, while waiting for the user to enter data.

Multithreading can make your program more responsive and interactive as well as enhance
performance. For example, a good word processor lets you print or save a file while you are
typing. In some cases, multithreaded programs run faster than single-threaded programs even
on single-processor systems. Java provides exceptionally good support for creating and running
threads, and for locking resources to prevent conflicts.

You can create additional threads to run concurrent tasks in the program. In Java, each task
is an instance of the Runnable interface, also called a runnable object. A thread is essentially
an object that facilitates the execution of a task.

	32.2.1	 Why is multithreading needed? How can multiple threads run simultaneously in a
single-processor system?

	32.2.2	 What is a runnable object? What is a thread?

32.3  Creating Tasks and Threads
A task class must implement the Runnable interface. A task must be run from a
thread.

Tasks are objects. To create tasks, you have to first define a class for tasks, which implements
the Runnable interface. The Runnable interface is rather simple. All it contains is the run()
method. You need to implement this method to tell the system how your thread is going to run.
A template for developing a task class is shown in Figure 32.2a.

time sharing

task

runnable object

thread

Point
Check

Point
Key

Runnable interface

run() method

M32_LIAN0182_11_SE_C32.indd 2 5/22/17 12:34 PM

32.3  Creating Tasks and Threads 32-3

Once you have defined a TaskClass, you can create a task using its constructor. For
example,

TaskClass task = new TaskClass(...);

A task must be executed in a thread. The Thread class contains the constructors for creating
threads and many useful methods for controlling threads. To create a thread for a task, use

Thread thread = new Thread(task);

You can then invoke the start() method to tell the JVM that the thread is ready to run, as
follows:

thread.start();

The JVM will execute the task by invoking the task’s run() method. Figure 32.2b outlines
the major steps for creating a task, a thread, and starting the thread.

Listing 32.1 gives a program that creates three tasks and three threads to run them.

■■ The first task prints the letter a 100 times.

■■ The second task prints the letter b 100 times.

■■ The third task prints the integers 1 through 100.

When you run this program, the three threads will share the CPU and take turns printing letters
and numbers on the console. Figure 32.3 shows a sample run of the program.

Thread class
create a task

create a thread

start a thread

Figure 32.2  Define a task class by implementing the Runnable interface.

// Client class
public class Client {
 ...
 public void someMethod() {
 ...
 // Create an instance of TaskClass
 TaskClass task = new TaskClass(...);

 // Create a thread
 Thread thread = new Thread(task);

 // Start a thread
 thread.start();
 ...
 }
 ...
}

// Custom task class
public class TaskClass implements Runnable {
 ...
 public TaskClass(...) {
 ...
 }

 // Implement the run method in Runnable
 public void run() {
 // Tell system how to run custom thread
 ...
 }
 ...
}

TaskClassjava.lang.Runnable

(a) (b)

Figure 32.3  Tasks printA, printB, and print100 are executed simultaneously to
display the letter a 100 times, the letter b 100 times, and the numbers from 1 to 100.

M32_LIAN0182_11_SE_C32.indd 3 5/22/17 12:34 PM

32-4 Chapter 32   Multithreading and Parallel Programming

Listing 32.1  TaskThreadDemo.java

 1 public class TaskThreadDemo {
 2 public static void main(String[] args) {
 3 // Create tasks
 4 Runnable printA = new PrintChar('a', 100);
 5 Runnable printB = new PrintChar('b', 100);
 6 Runnable print100 = new PrintNum(100);
 7
 8 // Create threads
 9 Thread thread1 = new Thread(printA);
10 Thread thread2 = new Thread(printB);
11 Thread thread3 = new Thread(print100);
12
13 // Start threads
14 thread1.start();
15 thread2.start();
16 thread3.start();
17 }
18 }
19
20 // The task for printing a character a specified number of times
21 class PrintChar implements Runnable {
22 private char charToPrint; // The character to print
23 private int times; // The number of times to repeat
24
25 /** Construct a task with a specified character and number of
26 * times to print the character
27 */
28 public PrintChar(char c, int t) {
29 charToPrint = c;
30 times = t;
31 }
32
33 @Override /** Override the run() method to tell the system
34 * what task to perform
35 */
36 public void run() {
37 for (int i = 0; i < times; i++) {
38 System.out.print(charToPrint);
39 }
40 }
41 }
42
43 // The task class for printing numbers from 1 to n for a given n
44 class PrintNum implements Runnable {
45 private int lastNum;
46
47 /** Construct a task for printing 1, 2, ..., n */
48 public PrintNum(int n) {
49 lastNum = n;
50 }
51
52 @Override /** Tell the thread how to run */
53 public void run() {
54 for (int i = 1; i <= lastNum; i++) {
55 System.out.print(" " + i);
56 }
57 }
58 }

create tasks

create threads

start threads

task class

run

task class

run

M32_LIAN0182_11_SE_C32.indd 4 5/22/17 12:34 PM

32.3  Creating Tasks and Threads 32-5

The program creates three tasks (lines 4–6). To run them concurrently, three threads are created
(lines 9–11). The start() method (lines 14–16) is invoked to start a thread that causes the
run() method in the task to be executed. When the run() method completes, the thread
terminates.

Because the first two tasks, printA and printB, have similar functionality, they can
be defined in one task class PrintChar (lines 21–41). The PrintChar class implements
Runnable and overrides the run() method (lines 36–40) with the print-character action. This
class provides a framework for printing any single character a given number of times. The
runnable objects, printA and printB, are instances of the PrintChar class.

The PrintNum class (lines 44–58) implements Runnable and overrides the run() method
(lines 53–57) with the print-number action. This class provides a framework for printing num-
bers from 1 to n, for any integer n. The runnable object print100 is an instance of the class
printNum class.

Note
If you don’t see the effect of these three threads running concurrently, increase the
number of characters to be printed. For example, change line 4 to

Runnable printA = new PrintChar('a', 10000);

Important Note
The run()method in a task specifies how to perform the task. This method is automati-
cally invoked by the JVM. You should not invoke it. Invoking run()directly merely
executes this method in the same thread; no new thread is started.

	32.3.1	 How do you define a task class? How do you create a thread for a task?

	32.3.2	 What would happen if you replace the start() method with the run() method in
lines 14–16 in Listing 32.1?

effect of concurrency

run() method

Point
Check

print100.start();

printA.start();

printB.start();

Replaced by print100.run();
printA.run();
printB.run();

	32.3.3	 What is wrong in the following two programs? Correct the errors.

public class Test implements Runnable {
 public static void main(String[] args) {
 new Test();
 }

 public Test() {

 Test task = new Test();
 new Thread(task).start();
 }

 public void run() {
 System.out.println("test");
 }
}

public class Test implements Runnable {
 public static void main(String[] args) {
 new Test();
 }

 public Test() {
 Thread t = new Thread(this);
 t.start();
 t.start();
 }

 public void run() {
 System.out.println("test");
 }
}

(a) (b)

M32_LIAN0182_11_SE_C32.indd 5 5/22/17 12:34 PM

32-6 Chapter 32   Multithreading and Parallel Programming

32.4  The Thread Class
The Thread class contains the constructors for creating threads for tasks and the
methods for controlling threads.

Figure 32.4 shows the class diagram for the Thread class.

Point
Key

Figure 32.4  The Thread class contains the methods for controlling threads.

java.lang.Thread

«interface»
java.lang.Runnable

+Thread(task: Runnable)

+Thread()

+start(): void

+interrupt(): void

+isAlive(): boolean

+setPriority(p: int): void

+join(): void

Creates a Thread for a speci�ed task.

Creates an empty Thread.

Starts the thread that causes the run() method to be invoked by the JVM.

Interrupts this thread.

Sets priority p (ranging from 1 to 10) for this thread.

Waits for this thread to �nish.

Puts a thread to sleep for a speci�ed time in milliseconds.

Causes a thread to pause temporarily and allow other threads to execute.

Tests whether the thread is currently running.

+sleep(millis: long): void

+yield(): void

Figure 32.5  Define a thread class by extending the Thread class.

// Client class
public class Client {
 ...
 public void someMethod() {
 ...
 // Create a thread
 CustomThread thread1 = new CustomThread(...);

 // Start a thread
 thread1.start();

 // Create another thread
 CustomThread thread2 = new CustomThread(...);

 // Start a thread
 thread2.start();
 }
 ...
}

// Custom thread class
public class CustomThread extends Thread {
 ...
 public CustomThread(...) {
 ...
 }

 // Override the run method in Runnable
 public void run() {
 // Tell system how to perform this task
 ...
 }
 ...
}

CustomThreadjava.lang.Thread

(a) (b)

...

Note
Since the Thread class implements Runnable, you could define a class that extends
Thread and implements the run method, as shown in Figure 32.5a, then create an
object from the class and invoke its start method in a client program to start the thread,
as shown in Figure 32.5b.separating task from thread

M32_LIAN0182_11_SE_C32.indd 6 5/22/17 12:34 PM

32.4  The Thread Class 32-7

This approach is, however, not recommended because it mixes the task and the
mechanism of running the task. Separating the task from the thread is a preferred design.

Note
The Thread class also contains the stop(), suspend(), and resume() methods.
As of Java 2, these methods were deprecated (or outdated) because they are known to
be inherently unsafe. Instead of using the stop() method, you should assign null to
a Thread variable to indicate that it has stopped.

You can use the yield() method to temporarily release time for other threads. For example,
suppose that you modify the code in the run() method in lines 53–57 for PrintNum in
Listing 32.1 as follows:

public void run() {
 for (int i = 1; i <= lastNum; i++) {
 System.out.print(" " + i);
 Thread.yield();
 }
}

Every time a number is printed, the thread of the print100 task is yielded to other threads.
The sleep(long millis) method puts the thread to sleep for a specified time in milli-

seconds to allow other threads to execute. For example, suppose that you modify the code in
lines 53–57 in Listing 32.1 as follows:

public void run() {
 try {
 for (int i = 1; i <= lastNum; i++) {
 System.out.print(" " + i);
 if (i >= 50) Thread.sleep(1);
 }
 }
 catch (InterruptedException ex) {
 }
}

Every time a number (>= 50) is printed, the thread of the print100 task is put to sleep for
1 millisecond.

The sleep method may throw an InterruptedException, which is a checked exception.
Such an exception may occur when a sleeping thread’s interrupt() method is called. The
interrupt() method is very rarely invoked on a thread, so an InterruptedException is
unlikely to occur. But since Java forces you to catch checked exceptions, you have to put it in
a try-catch block. If a sleep method is invoked in a loop, you should wrap the loop in a
try-catch block, as shown in (a) below. If the loop is outside the try-catch block, as
shown in (b), the thread may continue to execute even though it is being interrupted.

deprecated method

yield()

sleep(long)

InterruptedException

public void run() {
 try {
 while (...) {
 ...
 Thread.sleep(1000);
 }
 }
 catch (InterruptedException ex) {
 ex.printStackTrace();
 }
}

public void run() {
 while (...) {
 try {
 ...
 Thread.sleep(sleepTime);
 }
 catch (InterruptedException ex) {
 ex.printStackTrace();
 }
 }
}

(a) Correct (b) Incorrect

M32_LIAN0182_11_SE_C32.indd 7 5/22/17 12:34 PM

32-8 Chapter 32   Multithreading and Parallel Programming

You can use the join() method to force one thread to wait for another thread to finish. For
example, suppose that you modify the code in lines 53–57 in Listing 32.1 as follows:

join()

Thread
print100

Wait for thread4
to �nish

Thread
thread4

thread4 �nished

public void run() {
 Thread thread4 = new Thread(
 new PrintChar('c', 40));
 thread4.start();
 try {
 for (int i = 1; i <= lastNum; i++) {
 System.out.print (" " + i);
 if (i == 50) thread4.join();
 }
 }
 catch (InterruptedException ex) {
 }
}

thread4.join()

A new thread4 is created and it prints character c 40 times. The numbers from 50 to 100
are printed after thread thread4 is finished.

Java assigns every thread a priority. By default, a thread inherits the priority of the thread
that spawned it. You can increase or decrease the priority of any thread by using the
setPriority method and you can get the thread’s priority by using the getPriority
method. Priorities are numbers ranging from 1 to 10. The Thread class has the int constants
MIN_PRIORITY, NORM_PRIORITY, and MAX_PRIORITY, representing 1, 5, and 10, respec-
tively. The priority of the main thread is Thread.NORM_PRIORITY.

The JVM always picks the currently runnable thread with the highest priority. A lower
priority thread can run only when no higher priority threads are running. If all runnable threads
have equal priorities, each is assigned an equal portion of the CPU time in a circular queue.
This is called round-robin scheduling. For example, suppose that you insert the following code
in line 16 in Listing 32.1:

thread3.setPriority(Thread.MAX_PRIORITY);

The thread for the print100 task will be finished first.

Tip
The priority numbers may be changed in a future version of Java. To minimize the impact
of any changes, use the constants in the Thread class to specify thread priorities.

Tip
A thread may never get a chance to run if there is always a higher priority thread running
or a same-priority thread that never yields. This situation is known as contention or
starvation. To avoid contention, the thread with higher priority must periodically invoke
the sleep or yield method to give a thread with a lower or the same priority a chance
to run.

	32.4.1	 Which of the following methods are instance methods in java.lang.Thread?
Which method may throw an InterruptedException? Which of them are
deprecated in Java?

run, start, stop, suspend, resume, sleep, interrupt, yield, join

	32.4.2	 If a loop contains a method that throws an InterruptedException, why should
the loop be placed inside a try-catch block?

	32.4.3	 How do you set a priority for a thread? What is the default priority?

setPriority(int)

round-robin scheduling

contention or starvation

Point
Check

M32_LIAN0182_11_SE_C32.indd 8 5/22/17 12:34 PM

32.5  Animation Using Threads and the Platform.runLater Method 32-9

32.5  Animation Using Threads and the Platform.
runLater Method
You can use a thread to control an animation and run the code in JavaFX GUI thread
using the Platform.runLater method.

The use of a Timeline object to control animations was introduced in Section 15.11, Ani-
mation. Alternatively, you can also use a thread to control animation. Listing 32.2 gives an
example that displays flashing text on a label, as shown in Figure 32.6.

Point
Key

Figure 32.6  The text “Welcome” blinks.

Listing 32.2  FlashText.java

 1 import javafx.application.Application;
 2 import javafx.application.Platform;
 3 import javafx.scene.Scene;
 4 import javafx.scene.control.Label;
 5 import javafx.scene.layout.StackPane;
 6 import javafx.stage.Stage;
 7
 8 public class FlashText extends Application {
 9 private String text = "";
10
11 @Override // Override the start method in the Application class
12 public void start(Stage primaryStage) {
13 StackPane pane = new StackPane();
14 Label lblText = new Label("Programming is fun");
15 pane.getChildren().add(lblText);
16
17 new Thread(new Runnable() {
18 @Override
19 public void run() {
20 try {
21 while (true) {
22 if (lblText.getText().trim().length() == 0)
23 text = "Welcome";
24 else
25 text = "";
26
27 Platform.runLater(new Runnable() { // Run from JavaFX GUI
28 @Override
29 public void run() {
30 lblText.setText(text);
31 }
32 });
33
34 Thread.sleep(200);
35 }
36 }
37 catch (InterruptedException ex) {
38 }
39 }
40 }).start();
41

create a label
label in a pane

create a thread

run thread

change text

Platform.runLater

update GUI

sleep

M32_LIAN0182_11_SE_C32.indd 9 5/22/17 12:34 PM

32-10 Chapter 32   Multithreading and Parallel Programming

42 // Create a scene and place it in the stage
43 Scene scene = new Scene(pane, 200, 50);
44 primaryStage.setTitle("FlashText"); // Set the stage title
45 primaryStage.setScene(scene); // Place the scene in the stage
46 primaryStage.show(); // Display the stage
47 }
48 }

The program creates a Runnable object in an anonymous inner class (lines 17–40). This object
is started in line 40 and runs continuously to change the text in the label. It sets a text in the
label if the label is blank (line 23) and sets its text blank (line 25) if the label has a text. The
text is set and unset to simulate a flashing effect.

JavaFX GUI is run from the JavaFX application thread. The flashing control is run from a
separate thread. The code in a nonapplication thread cannot update GUI in the application
thread. To update the text in the label, a new Runnable object is created in lines 27–32. Invok-
ing Platform.runLater(Runnable r) tells the system to run this Runnable object in the
application thread.

The anonymous inner classes in this program can be simplifed using lambda expressions
as follows:

new Thread(() -> { // lambda expression
 try {
 while (true) {
 if (lblText.getText().trim().length() == 0)
 text = "Welcome";
 else
 text = "";

 Platform.runLater(() -> lblText.setText(text)); // lambda exp

 Thread.sleep(200);
 }
 }
 catch (InterruptedException ex) {
 }
}).start();

	32.5.1	 What causes the text to flash?

	32.5.2	 Is an instance of FlashText a runnable object?

	32.5.3	 What is the purpose of using Platform.runLater?

	32.5.4	 Can you replace the code in lines 27–32 using the following code?

Platform.runLater(e -> lblText.setText(text));

	32.5.5	 What happens if line 34 (Thread.sleep(200)) is not used?

	32.5.6	 There is an issue in Listing 16.9, ListViewDemo. If you press the CTRL key and
select Canada, Demark, and China in this order, you will get an ArrayIndex-
OutBoundsException. What is the reason for this error and how do you fix it?
(Thanks to Henri Heimonen of Finland for contributing this question).

32.6  Thread Pools
A thread pool can be used to execute tasks efficiently.

In Section 32.3, Creating Tasks and Threads, you learned how to define a task class by imple-
menting java.lang.Runnable, and how to create a thread to run a task like this:

Runnable task = new TaskClass(...);
new Thread(task).start();

JavaFX application thread

Platform.runLater

Point
Check

Point
Key

M32_LIAN0182_11_SE_C32.indd 10 5/22/17 12:34 PM

32.6  Thread Pools 32-11

To create an Executor object, use the static methods in the Executors class, as shown
in Figure 32.8. The newFixedThreadPool(int) method creates a fixed number of threads
in a pool. If a thread completes executing a task, it can be reused to execute another task. If
a thread terminates due to a failure prior to shutdown, a new thread will be created to replace
it if all the threads in the pool are not idle and there are tasks waiting for execution. The
newCachedThreadPool() method creates a new thread if all the threads in the pool are not
idle and there are tasks waiting for execution. A thread in a cached pool will be terminated if
it has not been used for 60 seconds. A cached pool is efficient for many short tasks.

Figure 32.7  The Executor interface executes threads and the ExecutorService subinterface manages threads.

+shutdown(): void

+shutdownNow(): List<Runnable>

+isShutdown(): boolean
+isTerminated(): boolean

«interface»
java.util.concurrent.ExecutorService

+execute(Runnable object): void

«interface»
java.util.concurrent.Executor

Executes the runnable task.

Shuts down the executor, but allows the tasks in the executor
 to complete. Once shut down, it cannot accept new tasks.
Shuts down the executor immediately even though there are
 un�nished threads in the pool. Returns a list of un�nished tasks.
Returns true if the executor has been shut down.
Returns true if all tasks in the pool are terminated.

This approach is convenient for a single task execution, but it is not efficient for a large
number of tasks because you have to create a thread for each task. Starting a new thread for
each task could limit throughput and cause poor performance. Using a thread pool is an ideal
way to manage the number of tasks executing concurrently. Java provides the Executor
interface for executing tasks in a thread pool and the ExecutorService interface for man-
aging and controlling tasks. ExecutorService is a subinterface of Executor, as shown
in Figure 32.7.

Figure 32.8  The Executors class provides static methods for creating Executor objects.

Creates a thread pool with a �xed number of threads executing
 concurrently. A thread may be reused to execute another task
 after its current task is �nished.

Creates a thread pool that creates new threads as needed, but
 will reuse previously constructed threads when they are
 available.

java.util.concurrent.Executors

+newFixedThreadPool(numberOfThreads:
 int): ExecutorService

+newCachedThreadPool():
 ExecutorService

Listing 32.3 shows how to rewrite Listing 32.1 using a thread pool.

Listing 32.3  ExecutorDemo.java

 1 import java.util.concurrent.*;
 2
 3 public class ExecutorDemo {

M32_LIAN0182_11_SE_C32.indd 11 5/22/17 12:34 PM

32-12 Chapter 32   Multithreading and Parallel Programming

 4 public static void main(String[] args) {
 5 // Create a fixed thread pool with maximum three threads
 6 ExecutorService executor = Executors.newFixedThreadPool(3);
 7
 8 // Submit runnable tasks to the executor
 9 executor.execute(new PrintChar('a', 100));
10 executor.execute(new PrintChar('b', 100));
11 executor.execute(new PrintNum(100));
12
13 // Shut down the executor
14 executor.shutdown();
15 }
16 }

Line 6 creates a thread pool executor with a total of three threads maximum. Classes PrintChar
and PrintNum are defined in Listing 32.1. Line 9 creates a task, new PrintChar('a',
100), and adds it to the pool. Similarly, another two runnable tasks are created and added
to the same pool in lines 10 and 11. The executor creates three threads to execute three
tasks concurrently.

Suppose you replace line 6 with

ExecutorService executor = Executors.newFixedThreadPool(1);

What will happen? The three runnable tasks will be executed sequentially because there is
only one thread in the pool.

Suppose you replace line 6 with

ExecutorService executor = Executors.newCachedThreadPool();

What will happen? New threads will be created for each waiting task, so all the tasks will be
executed concurrently.

The shutdown() method in line 14 tells the executor to shut down. No new tasks can be
accepted, but any existing tasks will continue to finish.

Tip
If you need to create a thread for just one task, use the Thread class. If you need to
create threads for multiple tasks, it is better to use a thread pool.

	32.6.1	 What are the benefits of using a thread pool?

	32.6.2	 How do you create a thread pool with three fixed threads? How do you submit a
task to a thread pool? How do you know that all the tasks are finished?

32.7  Thread Synchronization
Thread synchronization is to coordinate the execution of the dependent threads.

A shared resource may become corrupted if it is accessed simultaneously by multiple threads.
The following example demonstrates the problem.

Suppose that you create and launch 100 threads, each of which adds a penny to an account.
Define a class named Account to model the account, a class named AddAPennyTask to add
a penny to the account, and a main class that creates and launches threads. The relationships
of these classes are shown in Figure 32.9. The program is given in Listing 32.4.

create executor

submit task

shut down executor

Point
Check

Point
Key

M32_LIAN0182_11_SE_C32.indd 12 5/22/17 12:34 PM

32.7  Thread Synchronization 32-13

Figure 32.9  AccountWithoutSync contains an instance of Account and 100 threads of AddAPennyTask.

100 1
AddAPennyTask

+run(): void

AccountWithoutSync

-account: Account

+main(args: String[]): void

1 1
Account

+getBalance(): int
+deposit(amount: int): void

-balance: int

«interface»
java.lang.Runnable

Listing 32.4  AccountWithoutSync.java

 1 import java.util.concurrent.*;
 2
 3 public class AccountWithoutSync {
 4 private static Account account = new Account();
 5
 6 public static void main(String[] args) {
 7 ExecutorService executor = Executors.newCachedThreadPool();
 8
 9 // Create and launch 100 threads
10 for (int i = 0; i < 100; i++) {
11 executor.execute(new AddAPennyTask());
12 }
13
14 executor.shutdown();
15
16 // Wait until all tasks are finished
17 while (!executor.isTerminated()) {
18 }
19
20 System.out.println("What is balance? " + account.getBalance());
21 }
22
23 // A thread for adding a penny to the account
24 private static class AddAPennyTask implements Runnable {
25 public void run() {
26 account.deposit(1);
27 }
28 }
29
30 // An inner class for account
31 private static class Account {
32 private int balance = 0;
33
34 public int getBalance() {
35 return balance;
36 }
37
38 public void deposit(int amount) {
39 int newBalance = balance + amount;
40
41 // This delay is deliberately added to magnify the

create executor

submit task

shut down executor

wait for all tasks to terminate

M32_LIAN0182_11_SE_C32.indd 13 5/22/17 12:34 PM

32-14 Chapter 32   Multithreading and Parallel Programming

42 // data-corruption problem and make it easy to see.
43 try {
44 Thread.sleep(5);
45 }
46 catch (InterruptedException ex) {
47 }
48
49 balance = newBalance;
50 }
51 }
52 }

The classes AddAPennyTask and Account in lines 24–51 are inner classes. Line 4 creates
an Account with initial balance 0. Line 11 creates a task to add a penny to the account and
submits the task to the executor. Line 11 is repeated 100 times in lines 10–12. The program
repeatedly checks whether all tasks are completed in lines 17 and 18. The account balance is
displayed in line 20 after all tasks are completed.

The program creates 100 threads executed in a thread pool executor (lines 10–12). The
isTerminated() method (line 17) is used to test whether all the threads in the pool are
terminated.

The balance of the account is initially 0 (line 32). When all the threads are finished, the
balance should be 100 but the output is unpredictable. As can be seen in Figure 32.10, the
answers are wrong in the sample run. This demonstrates the data-corruption problem that
occurs when all the threads have access to the same data source simultaneously.

Figure 32.10  The AccountWithoutSync program causes data inconsistency.

Lines 39–49 could be replaced by one statement:

balance = balance + amount;

It is highly unlikely, although plausible, that the problem can be replicated using this single
statement. The statements in lines 39–49 are deliberately designed to magnify the data-
corruption problem and make it easy to see. If you run the program several times but still
do not see the problem, increase the sleep time in line 44. This will increase the chances for
showing the problem of data inconsistency.

What, then, caused the error in this program? A possible scenario is shown in Figure 32.11.

Figure 32.11  Task 1 and Task 2 both add 1 to the same balance.

Step Balance Task 1 Task 2

1 0 newBalance = balance + 1;

newBalance = balance + 1;2 0
3 1 balance = newBalance;
4 1 balance = newBalance;

M32_LIAN0182_11_SE_C32.indd 14 5/22/17 12:34 PM

32.7  Thread Synchronization 32-15

In Step 1, Task 1 gets the balance from the account. In Step 2, Task 2 gets the same balance
from the account. In Step 3, Task 1 writes a new balance to the account. In Step 4, Task 2
writes a new balance to the account.

The effect of this scenario is that Task 1 does nothing because in Step 4, Task 2 overrides
Task 1’s result. Obviously, the problem is that Task 1 and Task 2 are accessing a common
resource in a way that causes a conflict. This is a common problem, known as a race condi-
tion, in multithreaded programs. A class is said to be thread-safe if an object of the class does
not cause a race condition in the presence of multiple threads. As demonstrated in the preced-
ing example, the Account class is not thread-safe.

32.7.1  The synchronized Keyword
To avoid race conditions, it is necessary to prevent more than one thread from simultaneously
entering a certain part of the program, known as the critical region. The critical region in
Listing 32.4 is the entire deposit method. You can use the keyword synchronized to
synchronize the method so that only one thread can access the method at a time. There are
several ways to correct the problem in Listing 32.4. One approach is to make Account
thread-safe by adding the keyword synchronized in the deposit method in line 38, as
follows:

public synchronized void deposit(double amount)

A synchronized method acquires a lock before it executes. A lock is a mechanism for exclu-
sive use of a resource. In the case of an instance method, the lock is on the object for which
the method was invoked. In the case of a static method, the lock is on the class. If one thread
invokes a synchronized instance method (respectively, static method) on an object, the lock of
that object (respectively, class) is acquired first, then the method is executed, and finally the
lock is released. Another thread invoking the same method of that object (respectively, class)
is blocked until the lock is released.

With the deposit method synchronized, the preceding scenario cannot happen. If Task 1
enters the method, Task 2 is blocked until Task 1 finishes the method, as shown in Figure 32.12.

race condition
thread-safe

critical region

Figure 32.12  Task 1 and Task 2 are synchronized.

Acquire a lock on the object account

Execute the deposit method

Release the lock

Release the lock

Task 1

Execute the deposit method

Task 2

Wait to acquire the lock

Acquire a lock on the object account

32.7.2  Synchronizing Statements
Invoking a synchronized instance method of an object acquires a lock on the object, and invok-
ing a synchronized static method of a class acquires a lock on the class. A synchronized state-
ment can be used to acquire a lock on any object, not just this object, when executing a block

M32_LIAN0182_11_SE_C32.indd 15 5/22/17 12:34 PM

32-16 Chapter 32   Multithreading and Parallel Programming

of the code in a method. This block is referred to as a synchronized block. The general form
of a synchronized statement is as follows:

synchronized (expr) {
 statements;
}

The expression expr must evaluate to an object reference. If the object is already locked by
another thread, the thread is blocked until the lock is released. When a lock is obtained on the
object, the statements in the synchronized block are executed and then the lock is released.

Synchronized statements enable you to synchronize part of the code in a method instead
of the entire method. This increases concurrency. You can make Listing 32.4 thread-safe by
placing the statement in line 26 inside a synchronized block:

synchronized (account) {
 account.deposit(1);
}

Note
Any synchronized instance method can be converted into a synchronized statement.
For example, the following synchronized instance method in (a) is equivalent to (b):

synchronized block

public synchronized void xMethod() {
 // method body
}

public void xMethod() {
 synchronized (this) {
 // method body
 }
}

(a) (b)

	32.7.1	 Give some examples of possible resource corruption when running multiple
threads. How do you synchronize conflicting threads?

	32.7.2	 Suppose you place the statement in line 26 of Listing 32.4 inside a synchronized
block to avoid race conditions, as follows:

synchronized (this) {
 account.deposit(1);
}

Will it work?

32.8  Synchronization Using Locks
Locks and conditions can be explicitly used to synchronize threads.

Recall that in Listing 32.4, 100 tasks deposit a penny to the same account concurrently, which
causes conflicts. To avoid it, you use the synchronized keyword in the deposit method,
as follows:

public synchronized void deposit(double amount)

A synchronized instance method implicitly acquires a lock on the instance before it executes
the method.

Java enables you to acquire locks explicitly, which give you more control for coordinating
threads. A lock is an instance of the Lock interface, which defines the methods for acquiring and
releasing locks, as shown in Figure 32.13. A lock may also use the newCondition() method
to create any number of Condition objects, which can be used for thread communications.

Point
Check

Point
Key

lock

M32_LIAN0182_11_SE_C32.indd 16 5/22/17 12:34 PM

32.8  Synchronization Using Locks 32-17

Figure 32.13  The ReentrantLock class implements the Lock interface to represent a lock.

«interface»

java.util.concurrent.locks.Lock

Acquires the lock.
Releases the lock.
Returns a new Condition instance that is bound to this
Lock instance.

java.util.concurrent.locks.ReentrantLock

+lock(): void
+unlock(): void
+newCondition(): Condition

+ReentrantLock()
+ReentrantLock(fair: boolean)

Same as ReentrantLock(false).
Creates a lock with the given fairness policy. When the

fairness is true, the longest-waiting thread will get the
lock. Otherwise, there is no particular access order.

ReentrantLock is a concrete implementation of Lock for creating mutually exclusive
locks. You can create a lock with the specified fairness policy. True fairness policies guarantee
that the longest waiting thread will obtain the lock first. False fairness policies grant a lock
to a waiting thread arbitrarily. Programs using fair locks accessed by many threads may have
poorer overall performance than those using the default setting, but they have smaller variances
in times to obtain locks and prevent starvation.

Listing 32.5 revises the program in Listing 32.7 to synchronize the account modification
using explicit locks.

Listing 32.5  AccountWithSyncUsingLock.java

 1 import java.util.concurrent.*;
 2 import java.util.concurrent.locks.*;
 3
 4 public class AccountWithSyncUsingLock {
 5 private static Account account = new Account();
 6
 7 public static void main(String[] args) {
 8 ExecutorService executor = Executors.newCachedThreadPool();
 9
10 // Create and launch 100 threads
11 for (int i = 0; i < 100; i++) {
12 executor.execute(new AddAPennyTask());
13 }
14
15 executor.shutdown();
16
17 // Wait until all tasks are finished
18 while (!executor.isTerminated()) {
19 }
20
21 �System.out.println("What is balance? " + account.getBalance());
22 }
23
24 // A thread for adding a penny to the account
25 public static class AddAPennyTask implements Runnable {
26 public void run() {
27 account.deposit(1);
28 }
29 }
30

fairness policy

package for locks

M32_LIAN0182_11_SE_C32.indd 17 5/22/17 12:34 PM

32-18 Chapter 32   Multithreading and Parallel Programming

31 // An inner class for Account
32 public static class Account {
33 �private static Lock lock = new ReentrantLock(); // Create a lock
34 private int balance = 0;
35
36 public int getBalance() {
37 return balance;
38 }
39
40 public void deposit(int amount) {
41 lock.lock(); // Acquire the lock
42
43 try {
44 int newBalance = balance + amount;
45
46 // This delay is deliberately added to magnify the
47 // data-corruption problem and make it easy to see.
48 Thread.sleep(5);
49
50 balance = newBalance;
51 }
52 catch (InterruptedException ex) {
53 }
54 finally {
55 lock.unlock(); // Release the lock
56 }
57 }
58 }
59 }

Line 33 creates a lock, line 41 acquires the lock, and line 55 releases the lock.

Tip
It is a good practice to always immediately follow a call to lock() with a try-catch
block and release the lock in the finally clause, as shown in lines 41–56, to ensure
that the lock is always released.

Listing 32.5 can be implemented using a synchronize method for deposit rather than using
a lock. In general, using synchronized methods or statements is simpler than using explicit
locks for mutual exclusion. However, using explicit locks is more intuitive and flexible to
synchronize threads with conditions, as you will see in the next section.

	32.8.1	 How do you create a lock object? How do you acquire a lock and release a lock?

32.9  Cooperation among Threads
Conditions on locks can be used to coordinate thread interactions.

Thread synchronization suffices to avoid race conditions by ensuring the mutual exclusion of
multiple threads in the critical region, but sometimes you also need a way for threads to cooper-
ate. Conditions can be used to facilitate communications among threads. A thread can specify
what to do under a certain condition. Conditions are objects created by invoking the newCon-
dition() method on a Lock object. Once a condition is created, you can use its await(),
signal(), and signalAll() methods for thread communications, as shown in Figure 32.14.
The await() method causes the current thread to wait until the condition is signaled. The
signal() method wakes up one waiting thread, and the signalAll() method wakes all
waiting threads.

release the lock

Point
Check

Point
Key

condition

create a lock

acquire the lock

M32_LIAN0182_11_SE_C32.indd 18 5/22/17 12:34 PM

32.9  Cooperation among Threads 32-19

Let us use an example to demonstrate thread communications. Suppose you create and
launch two tasks: one that deposits into an account, and one that withdraws from the same
account. The withdraw task has to wait if the amount to be withdrawn is more than the current
balance. Whenever new funds are deposited into the account, the deposit task notifies the
withdraw thread to resume. If the amount is still not enough for a withdrawal, the withdraw
thread has to continue to wait for a new deposit.

To synchronize the operations, use a lock with a condition: newDeposit (i.e., new deposit
added to the account). If the balance is less than the amount to be withdrawn, the withdraw task
will wait for the newDeposit condition. When the deposit task adds money to the account,
the task signals the waiting withdraw task to try again. The interaction between the two tasks
is shown in Figure 32.15.

thread cooperation example

Figure 32.14  The Condition interface defines the methods for performing
synchronization.

«interface»
java.util.concurrent.Condition

+await(): void
+signal(): void
+signalAll(): Condition

Causes the current thread to wait until the condition is signaled.
Wakes up one waiting thread.
Wakes up all waiting threads.

Figure 32.15  The condition newDeposit is used for communications between the two
threads.

while (balance < withdrawAmount)
newDeposit.await();

Withdraw Task

balance – = withdrawAmount

lock.unlock();

Deposit Task

lock.lock();

newDeposit.signalAll();

balance += depositAmount

lock.unlock();

lock.lock();

You create a condition from a Lock object. To use a condition, you have to first obtain a
lock. The await() method causes the thread to wait and automatically releases the lock on the
condition. Once the condition is right, the thread reacquires the lock and continues executing.

Assume the initial balance is 0 and the amount to deposit and withdraw are randomly gen-
erated. Listing 32.6 gives the program. A sample run of the program is shown in Figure 32.16.

Figure 32.16  The withdraw task waits if there are not sufficient funds to withdraw.

M32_LIAN0182_11_SE_C32.indd 19 5/22/17 12:34 PM

32-20 Chapter 32   Multithreading and Parallel Programming

Listing 32.6  ThreadCooperation.java

 1 import java.util.concurrent.*;
 2 import java.util.concurrent.locks.*;
 3
 4 public class ThreadCooperation {
 5 private static Account account = new Account();
 6
 7 public static void main(String[] args) {
 8 // Create a thread pool with two threads
 9 ExecutorService executor = Executors.newFixedThreadPool(2);
10 executor.execute(new DepositTask());
11 executor.execute(new WithdrawTask());
12 executor.shutdown();
13
14 System.out.println("Thread 1\t\tThread 2\t\tBalance");
15 }
16
17 public static class DepositTask implements Runnable {
18 @Override // Keep adding an amount to the account
19 public void run() {
20 try { �// Purposely delay it to let the withdraw method proceed
21 while (true) {
22 account.deposit((int)(Math.random() * 10) + 1);
23 Thread.sleep(1000);
24 }
25 }
26 catch (InterruptedException ex) {
27 ex.printStackTrace();
28 }
29 }
30 }
31
32 public static class WithdrawTask implements Runnable {
33 @Override // Keep subtracting an amount from the account
34 public void run() {
35 while (true) {
36 account.withdraw((int)(Math.random() * 10) + 1);
37 }
38 }
39 }
40
41 // An inner class for account
42 private static class Account {
43 // Create a new lock
44 private static Lock lock = new ReentrantLock();
45
46 // Create a condition
47 private static Condition newDeposit = lock.newCondition();
48
49 private int balance = 0;
50
51 public int getBalance() {
52 return balance;
53 }
54
55 public void withdraw(int amount) {
56 lock.lock(); // Acquire the lock
57 try {
58 while (balance < amount) {

create a lock

create a condition

acquire the lock

create two threads

M32_LIAN0182_11_SE_C32.indd 20 5/22/17 12:34 PM

32.9  Cooperation among Threads 32-21

59 System.out.println("\t\t\tWait for a deposit");
60 newDeposit.await();
61 }
62
63 balance -= amount;
64 System.out.println("\t\t\tWithdraw " + amount +
65 "\t\t" + getBalance());
66 }
67 catch (InterruptedException ex) {
68 ex.printStackTrace();
69 }
70 finally {
71 lock.unlock(); // Release the lock
72 }
73 }
74
75 public void deposit(int amount) {
76 lock.lock(); // Acquire the lock
77 try {
78 balance += amount;
79 System.out.println("Deposit " + amount +
80 "\t\t\t\t\t" + getBalance());
81
82 // Signal thread waiting on the condition
83 newDeposit.signalAll();
84 }
85 finally {
86 lock.unlock(); // Release the lock
87 }
88 }
89 }
90 }

The example creates a new inner class named Account to model the account with two meth-
ods, deposit(int) and withdraw(int), a class named DepositTask to add an amount
to the balance, a class named WithdrawTask to withdraw an amount from the balance, and a
main class that creates and launches two threads.

The program creates and submits the deposit task (line 10) and the withdraw task (line 11).
The deposit task is purposely put to sleep (line 23) to let the withdraw task run. When there are
not enough funds to withdraw, the withdraw task waits (line 59) for notification of the balance
change from the deposit task (line 83).

A lock is created in line 44. A condition named newDeposit on the lock is created in
line 47. A condition is bound to a lock. Before waiting or signaling the condition, a thread
must first acquire the lock for the condition. The withdraw task acquires the lock in line
56, waits for the newDeposit condition (line 60) when there is not a sufficient amount
to withdraw, and releases the lock in line 71. The deposit task acquires the lock in line 76
and signals all waiting threads (line 83) for the newDeposit condition after a new deposit
is made.

What will happen if you replace the while loop in lines 58–61 with the following if
statement?

if (balance < amount) {
 System.out.println("\t\t\tWait for a deposit");
 newDeposit.await();
}

The deposit task will notify the withdraw task whenever the balance changes. (balance <
amount) may still be true when the withdraw task is awakened. Using the if statement would

acquire the lock

signal threads

release the lock

wait on the condition

release the lock

M32_LIAN0182_11_SE_C32.indd 21 5/22/17 12:34 PM

32-22 Chapter 32   Multithreading and Parallel Programming

lead to incorrect withdraw. Using the loop statement, the withdraw task will have a chance to
recheck the condition.

Caution
Once a thread invokes await() on a condition, the thread waits for a signal to resume.
If you forget to call signal() or signalAll() on the condition, the thread will wait
forever.

Caution
A condition is created from a Lock object. To invoke its method (e.g., await(),
signal(), and signalAll()), you must first own the lock. If you invoke these
methods without acquiring the lock, an IllegalMonitorStateException will be
thrown.

Locks and conditions were introduced in Java 5. Prior to Java 5, thread communications were
programmed using the object’s built-in monitors. Locks and conditions are more powerful and
flexible than the built-in monitor, so will not need to use monitors. However, if you are work-
ing with legacy Java code, you may encounter Java’s built-in monitor.

A monitor is an object with mutual exclusion and synchronization capabilities. Only one
thread can execute a method at a time in the monitor. A thread enters the monitor by acquiring
a lock on it and exits by releasing the lock. Any object can be a monitor. An object becomes a
monitor once a thread locks it. Locking is implemented using the synchronized keyword on
a method or a block. A thread must acquire a lock before executing a synchronized method or
block. A thread can wait in a monitor if the condition is not right for it to continue executing
in the monitor. You can invoke the wait() method on the monitor object to release the lock
so some other thread can get in the monitor and perhaps change the monitor’s state. When
the condition is right, the other thread can invoke the notify() or notifyAll() method
to signal one or all waiting threads to regain the lock and resume execution. The template for
invoking these methods is shown in Figure 32.17.

ever-waiting threads

IllegalMonitorState
Exception

Java’s built-in monitor
monitor

Figure 32.17  The wait(), notify(), and notifyAll() methods coordinate thread communication.

synchronized (anObject) {
try {

// Wait for the condition to become true
while (!condition)

anObject.wait();

// Do something when condition is true
}
catch (InterruptedException ex) {

ex.printStackTrace();
}

}

Task 1

synchronized (anObject) {
// When condition becomes true
anObject.notify(); or anObject.notifyAll();
...

}

Task 2

resume

The wait(), notify(), and notifyAll() methods must be called in a synchronized
method or a synchronized block on the receiving object of these methods. Otherwise, an
IllegalMonitorStateException will occur.

When wait() is invoked, it pauses the thread and simultaneously releases the lock on the
object. When the thread is restarted after being notified, the lock is automatically reacquired.

The wait(), notify(), and notifyAll() methods on an object are analogous to the
await(), signal(), and signalAll() methods on a condition.

M32_LIAN0182_11_SE_C32.indd 22 5/22/17 12:34 PM

32.10  Case Study: Producer/Consumer 32-23

	32.9.1	 How do you create a condition on a lock? What are the await(), signal(), and
signalAll() methods for?

	32.9.2	 What would happen if the while loop in line 58 of Listing 32.6 was changed to an
if statement?

Point
Check

while (balance < amount)
Replaced by

if (balance < amount)

	32.9.3	 Why does the following class have a syntax error?

public class Test implements Runnable {
 public static void main(String[] args) {
 new Test();
 }

 public Test() throws InterruptedException {
 Thread thread = new Thread(this);
 thread.sleep(1000);
 }

 public synchronized void run() {
 }
}

	32.9.4	 What is a possible cause for IllegalMonitorStateException?

	32.9.5	 Can wait(), notify(), and notifyAll() be invoked from any object? What is
the purpose of these methods?

	32.9.6	 What is wrong in the following code?

synchronized (object1) {
 try {
 while (!condition) object2.wait();
 }
 catch (InterruptedException ex) {
 }
}

32.10  Case Study: Producer/Consumer
This section gives the classic Consumer/Producer example for demonstrating thread
coordination.

Suppose that you use a buffer to store integers and that the buffer size is limited. The buffer
provides the method write(int) to add an int value to the buffer and the method read()
to read and delete an int value from the buffer. To synchronize the operations, use a lock
with two conditions: notEmpty (i.e., the buffer is not empty) and notFull (i.e., the buffer
is not full). When a task adds an int to the buffer, if the buffer is full, the task will wait for
the notFull condition. When a task reads an int from the buffer, if the buffer is empty, the
task will wait for the notEmpty condition. The interaction between the two tasks is shown in
Figure 32.18.

Listing 32.7 presents the complete program. The program contains the Buffer class (lines
50–101) and two tasks for repeatedly adding and consuming numbers to and from the buffer
(lines 16–47). The write(int) method (lines 62–79) adds an integer to the buffer. The
read() method (lines 81–100) deletes and returns an integer from the buffer.

Point
Key

M32_LIAN0182_11_SE_C32.indd 23 5/22/17 12:34 PM

32-24 Chapter 32   Multithreading and Parallel Programming

The buffer is actually a first-in, first-out queue (lines 52 and 53). The conditions notEmpty
and notFull on the lock are created in lines 59 and 60. The conditions are bound to a lock. A
lock must be acquired before a condition can be applied. If you use the wait() and notify()
methods to rewrite this example, you have to designate two objects as monitors.

Listing 32.7  ConsumerProducer.java

 1 import java.util.concurrent.*;
 2 import java.util.concurrent.locks.*;
 3
 4 public class ConsumerProducer {
 5 private static Buffer buffer = new Buffer();
 6
 7 public static void main(String[] args) {
 8 // Create a thread pool with two threads
 9 ExecutorService executor = Executors.newFixedThreadPool(2);
 10 executor.execute(new ProducerTask());
 11 executor.execute(new ConsumerTask());
 12 executor.shutdown();
 13 }
 14
 15 // A task for adding an int to the buffer
 16 private static class ProducerTask implements Runnable {
 17 public void run() {
 18 try {
 19 int i = 1;
 20 while (true) {
 21 System.out.println("Producer writes " + i);
 22 buffer.write(i++); // Add a value to the buffer
 23 // Put the thread into sleep
 24 Thread.sleep((int)(Math.random() * 10000));
 25 }
 26 }
 27 catch (InterruptedException ex) {
 28 ex.printStackTrace();
 29 }
 30 }
 31 }
 32
 33 // A task for reading and deleting an int from the buffer
 34 private static class ConsumerTask implements Runnable {
 35 public void run() {

create a buffer

create two threads

producer task

consumer task

Figure 32.18  The conditions notFull and notEmpty are used to coordinate task
interactions.

while (count == CAPACITY)
notFull.await();

Task for adding an int

Add an int to the buffer

notEmpty.signal();

while (count == 0)
notEmpty.await();

Task for deleting an int

Delete an int from the buffer

notFull.signal();

M32_LIAN0182_11_SE_C32.indd 24 5/22/17 12:34 PM

32.10  Case Study: Producer/Consumer 32-25

 36 try {
 37 while (true) {
 38 System.out.println("\t\t\tConsumer reads " + buffer.read());
 39 // Put the thread into sleep
 40 Thread.sleep((int)(Math.random() * 10000));
 41 }
 42 }
 43 catch (InterruptedException ex) {
 44 ex.printStackTrace();
 45 }
 46 }
 47 }
 48
 49 // An inner class for buffer
 50 private static class Buffer {
 51 private static final int CAPACITY = 1; // buffer size
 52 private java.util.LinkedList<Integer> queue =
 53 new java.util.LinkedList<>();
 54
 55 // Create a new lock
 56 private static Lock lock = new ReentrantLock();
 57
 58 // Create two conditions
 59 private static Condition notEmpty = lock.newCondition();
 60 private static Condition notFull = lock.newCondition();
 61
 62 public void write(int value) {
 63 lock.lock(); // Acquire the lock
 64 try {
 65 while (queue.size() == CAPACITY) {
 66 System.out.println("Wait for notFull condition");
 67 notFull.await();
 68 }
 69
 70 queue.offer(value);
 71 notEmpty.signal(); // Signal notEmpty condition
 72 }
 73 catch (InterruptedException ex) {
 74 ex.printStackTrace();
 75 }
 76 finally {
 77 lock.unlock(); // Release the lock
 78 }
 79 }
 80
 81 public int read() {
 82 int value = 0;
 83 lock.lock(); // Acquire the lock
 84 try {
 85 while (queue.isEmpty()) {
 86 System.out.println("\t\t\tWait for notEmpty condition");
 87 notEmpty.await();
 88 }
 89
 90 value = queue.remove();
 91 notFull.signal(); // Signal notFull condition
 92 }
 93 catch (InterruptedException ex) {
 94 ex.printStackTrace();
 95 }

signal notFull

wait for notEmpty

acquire the lock

release the lock

signal notEmpty

wait for notFull

acquire the lock

create a condition
create a condition

create a lock

M32_LIAN0182_11_SE_C32.indd 25 5/22/17 12:34 PM

32-26 Chapter 32   Multithreading and Parallel Programming

 96 finally {
 97 lock.unlock(); // Release the lock
 98 return value;
 99 }
100 }
101 }
102 }

A sample run of the program is shown in Figure 32.19.

release the lock

Figure 32.19  Locks and conditions are used for communications between the Producer and
Consumer threads.

Figure 32.20  BlockingQueue is a subinterface of Queue.

Inserts an element to the tail of the queue.
 Waits if the queue is full.

Retrieves and removes the head of this
 queue. Waits if the queue is empty.

+put(element: E): void

+take(): E

«interface»
java.util.Collection<E>

«interface»
java.util.Queue<E>

«interface»
 java.util.concurrent.BlockingQueue<E>

	32.10.1	 Can the read and write methods in the Buffer class be executed concurrently?

	32.10.2	 When invoking the read method, what happens if the queue is empty?

	32.10.3	 When invoking the write method, what happens if the queue is full?

32.11  Blocking Queues
Java Collections Framework provides ArrayBlockingQueue, LinkedBlocking-
Queue, and PriorityBlockingQueue for supporting blocking queues.

Queues and priority queues were introduced in Section 20.9. A blocking queue causes a thread
to block when you try to add an element to a full queue or to remove an element from an empty
queue. The BlockingQueue interface extends java.util.Queue and provides the synchro-
nized put and take methods for adding an element to the tail of the queue and for removing
an element from the head of the queue, as shown in Figure 32.20.

Point
Check

Point
Key

blocking queue

M32_LIAN0182_11_SE_C32.indd 26 5/22/17 12:34 PM

32.11  Blocking Queues 32-27

Note
The put method will never block an unbounded LinkedBlockingQueue or
PriorityBlockingQueue.

Listing 32.8 gives an example of using an ArrayBlockingQueue to simplify the Con-
sumer/Producer example in Listing 32.10. Line 5 creates an ArrayBlockingQueue to store
integers. The Producer thread puts an integer into the queue (line 22) and the Consumer thread
takes an integer from the queue (line 38).

Listing 32.8  ConsumerProducerUsingBlockingQueue.java

 1 import java.util.concurrent.*;
 2
 3 public class ConsumerProducerUsingBlockingQueue {
 4 private static ArrayBlockingQueue<Integer> buffer =
 5 new ArrayBlockingQueue<>(2);
 6
 7 public static void main(String[] args) {
 8 // Create a thread pool with two threads
 9 ExecutorService executor = Executors.newFixedThreadPool(2);
10 executor.execute(new ProducerTask());
11 executor.execute(new ConsumerTask());
12 executor.shutdown();
13 }
14
15 // A task for adding an int to the buffer
16 private static class ProducerTask implements Runnable {
17 public void run() {
18 try {
19 int i = 1;
20 while (true) {
21 System.out.println("Producer writes " + i);
22 buffer.put(i++); // Add any value to the buffer, say, 1
23 // Put the thread into sleep

unbounded queue

create a buffer

create two threads

producer task

put

consumer task

Figure 32.21  ArrayBlockingQueue, LinkedBlockingQueue, and PriorityBlockingQueue are concrete
blocking queues.

«interface»
java.util.concurrent.BlockingQueue<E>

+ArrayBlockingQueue(capacity: int)

+ArrayBlockingQueue(capacity: int,
 fair: boolean)

ArrayBlockingQueue<E>

+LinkedBlockingQueue()

+LinkedBlockingQueue(capacity: int)

LinkedBlockingQueue<E>

+PriorityBlockingQueue()

+PriorityBlockingQueue(capacity: int)

PriorityBlockingQueue<E>

Three concrete blocking queues—ArrayBlockingQueue, LinkedBlockingQueue, and
PriorityBlockingQueue—are provided in Java, as shown in Figure 32.21. All are in the
java.util.concurrent package. ArrayBlockingQueue implements a blocking queue
using an array. You have to specify a capacity or an optional fairness to construct an Array-
BlockingQueue. LinkedBlockingQueue implements a blocking queue using a linked list.
You can create an unbounded or bounded LinkedBlockingQueue. PriorityBlocking-
Queue is a priority queue. You can create an unbounded or bounded priority queue.

M32_LIAN0182_11_SE_C32.indd 27 5/22/17 12:34 PM

32-28 Chapter 32   Multithreading and Parallel Programming

38 System.out.println("\t\t\tConsumer reads " + buffer.take());

Figure 32.22  A limited number of threads can access a shared resource controlled by a
semaphore.

Acquire a permit from a semaphore.
Wait if the permit is not available.

Release the permit to the semaphore.

A thread accessing a shared resource.

Access the resource

semaphore.acquire();

semaphore.release();

39 // Put the thread into sleep
40 Thread.sleep((int)(Math.random() * 10000));
41 }
42 }
43 catch (InterruptedException ex) {
44 ex.printStackTrace();
45 }
46 }
47 }
48 }

In Listing 32.7, you used locks and conditions to synchronize the Producer and Consumer
threads. This program does not use locks and conditions because synchronization is already
implemented in ArrayBlockingQueue.

	32.11.1	 What is a blocking queue? What blocking queues are supported in Java?

	32.11.2	 What method do you use to add an element to an ArrayBlockingQueue? What
happens if the queue is full?

	32.11.3	 What method do you use to retrieve an element from an ArrayBlockingQueue?
What happens if the queue is empty?

32.12  Semaphores
Semaphores can be used to restrict the number of threads that access a shared resource.

In computer science, a semaphore is an object that controls the access to a common resource. Before
accessing the resource, a thread must acquire a permit from the semaphore. After finishing with the
resource, the thread must return the permit back to the semaphore, as shown in Figure 32.22.

take

Consumer task

Point
Check

Point
Key

semaphore

24 Thread.sleep((int)(Math.random() * 10000));
25 }
26 }
27 catch (InterruptedException ex) {
28 ex.printStackTrace();
29 }
30 }
31 }
32
33 // A task for reading and deleting an int from the buffer
34 private static class ConsumerTask implements Runnable {
35 public void run() {
36 try {
37 while (true) {

M32_LIAN0182_11_SE_C32.indd 28 5/22/17 12:34 PM

32.12  Semaphores 32-29

A semaphore with just one permit can be used to simulate a mutually exclusive lock.
Listing 32.9 revises the Account inner class in Listing 32.9 using a semaphore to ensure that
only one thread at a time can access the deposit method.

Listing 32.9  New Account Inner Class

 1 // An inner class for Account
 2 private static class Account {
 3 // Create a semaphore
 4 private static Semaphore semaphore = new Semaphore(1);
 5 private int balance = 0;
 6
 7 public int getBalance() {
 8 return balance;
 9 }
10
11 public void deposit(int amount) {
12 try {
13 semaphore.acquire(); // Acquire a permit
14 int newBalance = balance + amount;
15
16 // This delay is deliberately added to magnify the
17 // data-corruption problem and make it easy to see
18 Thread.sleep(5);
19
20 balance = newBalance;
21 }
22 catch (InterruptedException ex) {
23 }
24 finally {
25 semaphore.release(); // Release a permit
26 }
27 }
28 }

A semaphore with one permit is created in line 4. A thread first acquires a permit when execut-
ing the deposit method in line 13. After the balance is updated, the thread releases the permit
in line 25. It is a good practice to always place the release() method in the finally clause
to ensure that the permit is finally released even in the case of exceptions.

create a semaphore

acquire a permit

release a permit

Figure 32.23  The Semaphore class contains the methods for accessing a semaphore.

java.util.concurrent.Semaphore

+Semaphore(numberOfPermits: int)

+Semaphore(numberOfPermits: int, fair:
boolean)

+acquire(): void

+release(): void

Creates a semaphore with the speci�ed number of permits. The
fairness policy is false.

Creates a semaphore with the speci�ed number of permits and
the fairness policy.

Acquires a permit from this semaphore. If no permit is
available, the thread is blocked until one is available.

Releases a permit back to the semaphore.

To create a semaphore, you have to specify the number of permits with an optional fair-
ness policy, as shown in Figure 32.23. A task acquires a permit by invoking the semaphore’s
acquire() method and releases the permit by invoking the semaphore’s release()
method. Once a permit is acquired, the total number of available permits in a semaphore is
reduced by 1. Once a permit is released, the total number of available permits in a semaphore
is increased by 1.

M32_LIAN0182_11_SE_C32.indd 29 5/22/17 12:34 PM

32-30 Chapter 32   Multithreading and Parallel Programming

	32.12.1	 What are the similarities and differences between a lock and a semaphore?

	32.12.2	 How do you create a semaphore that allows three concurrent threads? How do
you acquire a semaphore? How do you release a semaphore?

32.13  Avoiding Deadlocks
Deadlocks can be avoided by using a proper resource ordering.

Sometimes two or more threads need to acquire the locks on several shared objects. This could
cause a deadlock, in which each thread has the lock on one of the objects and is waiting for the
lock on the other object. Consider the scenario with two threads and two objects, as shown
in Figure 32.24. Thread 1 has acquired a lock on object1, and Thread 2 has acquired a lock
on object2. Now Thread 1 is waiting for the lock on object2, and Thread 2 for the lock on
object1. Each thread waits for the other to release the lock it needs and until that happens,
neither can continue to run.

Point
Check

Point
Key

deadlock

Figure 32.24  Thread 1 and Thread 2 are deadlocked.

synchronized (object1) {

 // do something here

synchronized (object2) {

// do something here
}

}

Thread 1

synchronized (object2) {

// do something here

synchronized (object1) {
// do something here

 }
}

Thread 2 Step

1
2
3
4
5
6

Wait for Thread 2 to
release the lock on object2

Wait for Thread 1 to
release the lock on object1

Deadlock is easily avoided by using a simple technique known as resource ordering. With
this technique, you assign an order to all the objects whose locks must be acquired and ensure
that each thread acquires the locks in that order. For example in Figure 32.24, suppose the
objects are ordered as object1 and object2. Using the resource-ordering technique, Thread
2 must acquire a lock on object1 first, then on object2. Once Thread 1 acquires a lock on
object1, Thread 2 has to wait for a lock on object1. Thus, Thread 1 will be able to acquire
a lock on object2 and no deadlock will occur.

	32.13.1	What is a deadlock? How can you avoid deadlock?

32.14  Thread States
A thread state indicates the status of thread.

Tasks are executed in threads. Threads can be in one of the five states: New, Ready, Running,
Blocked, or Finished (see Figure 32.25).

When a thread is newly created, it enters the New state. After a thread is started by calling
its start() method, it enters the Ready state. A ready thread is runnable but may not be run-
ning yet. The operating system has to allocate CPU time to it.

When a ready thread begins executing, it enters the Running state. A running thread can
enter the Ready state if its given CPU time expires or its yield() method is called.

resource ordering

Point
Check

Point
Key

M32_LIAN0182_11_SE_C32.indd 30 5/22/17 12:34 PM

32.15  Synchronized Collections 32-31

A thread can enter the Blocked state (i.e., become inactive) for several reasons. It may have
invoked the join(), sleep(), or wait() method. It may be waiting for an I/O operation
to finish. A blocked thread may be reactivated when the action inactivating it is reversed.
For example, if a thread has been put to sleep and the sleep time has expired, the thread is
reactivated and enters the Ready state.

Finally, a thread is Finished if it completes the execution of its run() method.
The isAlive() method is used to find out the state of a thread. It returns true if a thread

is in the Ready, Blocked, or Running state; it returns false if a thread is new and has not
started or if it is finished.

The interrupt() method interrupts a thread in the following way: If a thread is currently
in the Ready or Running state, its interrupted flag is set; if a thread is currently blocked, it
is awakened and enters the Ready state, and a java.lang.InterruptedException is
thrown.

	32.14.1	What is a thread state? Describe the states for a thread.

32.15  Synchronized Collections
Java Collections Framework provides synchronized collections for lists, sets, and maps.

The classes in the Java Collections Framework are not thread-safe; that is, their contents may
become corrupted if they are accessed and updated concurrently by multiple threads. You can
protect the data in a collection by locking the collection or by using synchronized collections.

The Collections class provides six static methods for wrapping a collection into a syn-
chronized version, as shown in Figure 32.26. The collections created using these methods are
called synchronization wrappers.

Point
Check

Point
Key

synchronized collection

synchronization wrapper

Figure 32.25  A thread can be in one of the five states: New, Ready, Running, Blocked, or Finished.

Thread created start()
run()

Wait for target
to �nish

Ready

Running

FinishedNew

Wait for time
out

Wait to be
noti�ed

run() completed
yield(), or
time out

sleep()join() wait()
Target
�nished

SignaledTime out

Blocked

Figure 32.26  You can obtain synchronized collections using the methods in the Collections class.

java.util.Collections

+synchronizedCollection(c: Collection): Collection

+synchronizedList(list: List): List

+synchronizedMap(m: Map): Map

+synchronizedSet(s: Set): Set

+synchronizedSortedMap(s: SortedMap): SortedMap

+synchronizedSortedSet(s: SortedSet): SortedSet

Returns a synchronized collection.

Returns a synchronized list from the speci�ed list.

Returns a synchronized map from the speci�ed map.

Returns a synchronized set from the speci�ed set.

Returns a synchronized sorted map from the speci�ed
 sorted map.
Returns a synchronized sorted set.

M32_LIAN0182_11_SE_C32.indd 31 5/22/17 12:34 PM

32-32 Chapter 32   Multithreading and Parallel Programming

Invoking synchronizedCollection(Collection c) returns a new Collection
object, in which all the methods that access and update the original collection c are synchro-
nized. These methods are implemented using the synchronized keyword. For example, the
add method is implemented like this:

public boolean add(E o) {
 synchronized (this) {
 return c.add(o);
 }
}

Synchronized collections can be safely accessed and modified by multiple threads concurrently.

Note
The methods in java.util.Vector, java.util.Stack, and java.util.
Hashtable are already synchronized. These are old classes introduced in JDK 1.0.
Starting with JDK 1.5, you should use java.util.ArrayList to replace Vector,
java.util.LinkedList to replace Stack, and java.util.Map to replace
Hashtable. If synchronization is needed, use a synchronization wrapper.

The synchronization wrapper classes are thread-safe, but the iterator is fail-fast. This means
that if you are using an iterator to traverse a collection while the underlying collection is being
modified by another thread, then the iterator will immediately fail by throwing java.util.
ConcurrentModificationException, which is a subclass of RuntimeException. To
avoid this error, you need to create a synchronized collection object and acquire a lock on the
object when traversing it. For example, to traverse a set, you have to write the code like this:

Set hashSet = Collections.synchronizedSet(new HashSet());

syn�chronized (hashSet) { // Must synchronize it
 Iterator iterator = hashSet.iterator();

 while (iterator.hasNext()) {
 System.out.println(iterator.next());
 }
}

Failure to do so may result in nondeterministic behavior, such as a Concurrent-
ModificationException.

	32.15.1	What is a synchronized collection? Is ArrayList synchronized? How do you
make it synchronized?

	32.15.2	Explain why an iterator is fail-fast.

32.16  Parallel Programming
The Fork/Join Framework is used for parallel programming in Java.

Section 7.12 introduced the Arrays.sort and Arrays.parallelSort method for sorting
an array. The parallelSort method utilizes multiple processors to reduce sort time.
Chapter 22 introduced parallel streams for executing stream operations in parallel to speed up
processing using multiple processors. The parallel processing are implemented using the Fork/
Join Framework. This section, introduces the new Fork/Join Framework so you can write own
code for parallel programming.

The Fork/Join Framework is illustrated in Figure 32.27 (the diagram resembles a fork, hence
its name). A problem is divided into nonoverlapping subproblems, which can be solved indepen-
dently in parallel. The solutions to all subproblems are then joined to obtain an overall solution
for the problem. This is the parallel implementation of the divide-and-conquer approach. In JDK
7’s Fork/Join Framework, a fork can be viewed as an independent task that runs on a thread.

fail-fast

Point
Check

Point
Key

JDK 7 feature

Fork/Join Framework

M32_LIAN0182_11_SE_C32.indd 32 5/22/17 12:34 PM

32.16  Parallel Programming 32-33

The framework defines a task using the ForkJoinTask class, as shown in Figure 32.28
and executes a task in an instance of ForkJoinPool, as shown in Figure 32.29.

ForkJoinTask

ForkJoinPool

Figure 32.27  The nonoverlapping subproblems are solved in parallel.

Subproblem

Subproblem

Subproblem

Subproblem

Problem

Fork

Solution

Join

Figure 32.28  The ForkJoinTask class defines a task for asynchronous execution.

«interface»
java.util.concurrent.Future<V>

+cancel(interrupt: boolean): boolean
+get(): V

+isDone(): boolean

Attempts to cancel this task.
Waits if needed for the computation to complete and
 returns the result.
Returns true if this task is completed.

java.util.concurrent.ForkJoinTask<V>

+adapt(Runnable task): ForkJoinTask<V>
+fork(): ForkJoinTask<V>
+join(): V
+invoke(): V

+invokeAll(tasks ForkJoinTask<?>…): void

Returns a ForkJoinTask from a runnable task.
Arranges asynchronous execution of the task.
Returns the result of computations when it is done.
Performs the task and awaits for its completion, and returns its
 result.
Forks the given tasks and returns when all tasks are completed.

java.util.concurrent.RecursiveAction<V>

#compute(): void De�nes how task is performed.

java.util.concurrent.RecursiveTask<V>

#compute(): V De�nes how task is performed. Returns the
 value after the task is completed.

Figure 32.29  The ForkJoinPool executes Fork/Join tasks.

«interface»
java.util.concurrent.ExecutorService

java.util.concurrent.ForkJoinPool

+ForkJoinPool()
+ForkJoinPool(parallelism: int)
+invoke(ForkJoinTask<T>): T

Creates a ForkJoinPool with all available processors.
Creates a ForkJoinPool with the speci�ed number of processors.
Performs the task and returns its result upon completion.

See Figure 32.8

M32_LIAN0182_11_SE_C32.indd 33 5/22/17 12:34 PM

32-34 Chapter 32   Multithreading and Parallel Programming

ForkJoinTask is the abstract base class for tasks. A ForkJoinTask is a thread-like entity,
but it is much lighter than a normal thread because huge numbers of tasks and subtasks can
be executed by a small number of actual threads in a ForkJoinPool. The tasks are primar-
ily coordinated using fork() and join(). Invoking fork() on a task arranges asynchro-
nous execution and invoking join() waits until the task is completed. The invoke() and
invokeAll(tasks) methods implicitly invoke fork() to execute the task and join() to
wait for the tasks to complete and return the result, if any. Note the static method invokeAll
takes a variable number of ForkJoinTask arguments using the ... syntax, which is intro-
duced in Section 7.9.

The Fork/Join Framework is designed to parallelize divide-and-conquer solutions, which
are naturally recursive. RecursiveAction and RecursiveTask are two subclasses of
ForkJoinTask. To define a concrete task class, your class should extend RecursiveAction
or RecursiveTask. RecursiveAction is for a task that doesn’t return a value and
RecursiveTask is for a task that does return a value. Your task class should override the
compute() method to specify how a task is performed.

We now use a merge sort to demonstrate how to develop parallel programs using the Fork/
Join Framework. The merge sort algorithm (introduced in Section 25.3) divides the array into
two halves and applies a merge sort on each half recursively. After the two halves are sorted,
the algorithm merges them. Listing 32.10 gives a parallel implementation of the merge sort
algorithm and compares its execution time with a sequential sort.

Listing 32.10  ParallelMergeSort.java

 1 import java.util.concurrent.RecursiveAction;
 2 import java.util.concurrent.ForkJoinPool;
 3
 4 public class ParallelMergeSort {
 5 public static void main(String[] args) {
 6 final int SIZE = 7000000;
 7 int[] list1 = new int[SIZE];
 8 int[] list2 = new int[SIZE];
 9
10 for (int i = 0; i < list1.length; i++)
11 list1[i] = list2[i] = (int)(Math.random() * 10000000);
12
13 long startTime = System.currentTimeMillis();
14 parallelMergeSort(list1); // Invoke parallel merge sort
15 long endTime = System.currentTimeMillis();
16 System.out.println("\nParallel time with "
17 + Runtime.getRuntime().availableProcessors() +
18 " processors is " + (endTime - startTime) + " milliseconds");
19
20 startTime = System.currentTimeMillis();
21 MergeSort.mergeSort(list2); // MergeSort is in Listing 23.5
22 endTime = System.currentTimeMillis();
23 System.out.println("\nSequential time is " +
24 (endTime - startTime) + " milliseconds");
25 }
26
27 public static void parallelMergeSort(int[] list) {
28 RecursiveAction mainTask = new SortTask(list);
29 ForkJoinPool pool = new ForkJoinPool();
30 pool.invoke(mainTask);
31 }
32
33 private static class SortTask extends RecursiveAction {
34 private final int THRESHOLD = 500;

RecursiveAction

RecursiveTask

invoke parallel sort

invoke sequential sort

create a ForkJoinTask
create a ForkJoinPool
execute a task

define concrete ForkJoinTask

M32_LIAN0182_11_SE_C32.indd 34 5/22/17 12:34 PM

32.16  Parallel Programming 32-35

35 private int[] list;
36
37 SortTask(int[] list) {
38 this.list = list;
39 }
40
41 @Override
42 protected void compute() {
43 if (list.length < THRESHOLD)
44 java.util.Arrays.sort(list);
45 else {
46 // Obtain the first half
47 int[] firstHalf = new int[list.length / 2];
48 System.arraycopy(list, 0, firstHalf, 0, list.length / 2);
49
50 // Obtain the second half
51 int secondHalfLength = list.length - list.length / 2;
52 int[] secondHalf = new int[secondHalfLength];
53 System.arraycopy(list, list.length / 2,
54 secondHalf, 0, secondHalfLength);
55
56 // Recursively sort the two halves
57 invokeAll(new SortTask(firstHalf),
58 new SortTask(secondHalf));
59
60 // Merge firstHalf with secondHalf into list
61 MergeSort.merge(firstHalf, secondHalf, list);
62 }
63 }
64 }
65 }

perform the task

sort a small list

split into two parts

solve each part

merge two parts

Parallel time with two processors is 2829 milliseconds

Sequential time is 4751 milliseconds

Since the sort algorithm does not return a value, we define a concrete ForkJoinTask class
by extending RecursiveAction (lines 33–64). The compute method is overridden to imple-
ment a recursive merge sort (lines 42–63). If the list is small, it is more efficient to be solved
sequentially (line 44). For a large list, it is split into two halves (lines 47–54). The two halves
are sorted concurrently (lines 57 and 58) and then merged (line 61).

The program creates a main ForkJoinTask (line 28), a ForkJoinPool (line 29), and
places the main task for execution in a ForkJoinPool (line 30). The invoke method will
return after the main task is completed.

When executing the main task, the task is split into subtasks, and the subtasks are invoked
using the invokeAll method (lines 57 and 58). The invokeAll method will return after all
the subtasks are completed. Note each subtask is further split into smaller tasks recursively.
Huge numbers of subtasks may be created and executed in the pool. The Fork/Join Framework
automatically executes and coordinates all the tasks efficiently.

The MergeSort class is defined in Listing 23.5. The program invokes MergeSort.merge
to merge two sorted sublists (line 61). The program also invokes MergeSort.mergeSort
(line 21) to sort a list using merge sort sequentially. You can see that the parallel sort is much
faster than the sequential sort.

Note the loop for initializing the list can also be parallelized. However, you should avoid
using Math.random() in the code because it is synchronized and cannot be executed in
parallel (see Programming Exercise 32.12). The parallelMergeSort method only sorts an

M32_LIAN0182_11_SE_C32.indd 35 5/22/17 12:34 PM

32-36 Chapter 32   Multithreading and Parallel Programming

array of int values, but you can modify it to become a generic method (see Programming
Exercise 32.13).

In general, a problem can be solved in parallel using the following pattern:

if (the program is small)
 solve it sequentially;
else {
 divide the problem into nonoverlapping subproblems;
 solve the subproblems concurrently;
 combine the results from subproblems to solve the whole problem;
}

Listing 32.11 develops a parallel method that finds the maximal number in a list.

Listing 32.11  ParallelMax.java

 1 import java.util.concurrent.*;
 2
 3 public class ParallelMax {
 4 public static void main(String[] args) {
 5 // Create a list
 6 final int N = 9000000;
 7 int[] list = new int[N];
 8 for (int i = 0; i < list.length; i++)
 9 list[i] = i;
10
11 long startTime = System.currentTimeMillis();
12 System.out.println("\nThe maximal number is " + max(list));
13 long endTime = System.currentTimeMillis();
14 System.out.println("The number of processors is " +
15 Runtime.getRuntime().availableProcessors());
16 System.out.println("Time is " + (endTime − startTime)
17 + " milliseconds");
18 }
19
20 public static int max(int[] list) {
21 RecursiveTask<Integer> task = new MaxTask(list, 0, list.length);
22 ForkJoinPool pool = new ForkJoinPool();
23 return pool.invoke(task);
24 }
25
26 private static class MaxTask extends RecursiveTask<Integer> {
27 private final static int THRESHOLD = 1000;
28 private int[] list;
29 private int low;
30 private int high;
31
32 public MaxTask(int[] list, int low, int high) {
33 this.list = list;
34 this.low = low;
35 this.high = high;
36 }
37
38 @Override
39 public Integer compute() {
40 if (high − low < THRESHOLD) {
41 int max = list[0];
42 for (int i = low; i < high; i++)
43 if (list[i] > max)
44 max = list[i];
45 return new Integer(max);

invoke max

create a ForkJoinTask
create a ForkJoinPool
execute a task

define concrete ForkJoinTask

perform the task

solve a small problem

M32_LIAN0182_11_SE_C32.indd 36 5/22/17 12:34 PM

Chapter Summary 32-37

46 }
47 else {
48 int mid = (low + high) / 2;
49 RecursiveTask<Integer> left = new MaxTask(list, low, mid);
50 RecursiveTask<Integer> right = new MaxTask(list, mid, high);
51
52 right.fork();
53 left.fork();
54 return new Integer(Math.max(left.join().intValue(),
55 right.join().intValue()));
56 }
57 }
58 }
59 }

split into two parts

fork right
fork left
join tasks

The maximal number is 8999999

The number of processors is 2

Time is 44 milliseconds

Since the algorithm returns an integer, we define a task class for fork join by extending
RecursiveTask<Integer> (lines 26–58). The compute method is overridden to return
the max element in a list[low..high] (lines 39–57). If the list is small, it is more
efficient to be solved sequentially (lines 40–46). For a large list, it is split into two halves
(lines 48–50). The tasks left and right find the maximal element in the left half and
right half, respectively. Invoking fork() on the task causes the task to be executed (lines
52 and 53). The join() method awaits for the task to complete and then returns the result
(lines 54 and 55).

	32.16.1	How do you define a ForkJoinTask? What are the differences between
RecursiveAction and RecursiveTask?

	32.16.2	How do you tell the system to execute a task?

	32.16.3	What method can you use to test if a task has been completed?

	32.16.4	How do you create a ForkJoinPool? How do you place a task into a
ForkJoinPool?

Point
Check

condition  32-18
deadlock  32-30
fail-fast  32-32
fairness policy  32-17
Fork/Join Framework  32-32
lock  32-16
monitor  32-22

multithreading  32-2
race condition  32-15
semaphore  32-28
synchronization wrapper  32-31
synchronized block  32-16
thread  32-2
thread-safe  32-15

Key Terms

Chapter Summary

1.	 Each task is an instance of the Runnable interface. A thread is an object that facilitates
the execution of a task. You can define a task class by implementing the Runnable
interface and create a thread by wrapping a task using a Thread constructor.

2.	 After a thread object is created, use the start() method to start a thread, and the
sleep(long) method to put a thread to sleep so other threads get a chance to run.

M32_LIAN0182_11_SE_C32.indd 37 5/22/17 12:34 PM

32-38 Chapter 32   Multithreading and Parallel Programming

3.	 A thread object never directly invokes the run method. The JVM invokes the run
method when it is time to execute the thread. Your class must override the run method
to tell the system what the thread will do when it runs.

4.	 To prevent threads from corrupting a shared resource, use synchronized methods or
blocks. A synchronized method acquires a lock before it executes. In the case of an
instance method, the lock is on the object for which the method was invoked. In the case
of a static method, the lock is on the class.

5.	 A synchronized statement can be used to acquire a lock on any object, not just this
object, when executing a block of the code in a method. This block is referred to as a
synchronized block.

6.	 You can use explicit locks and conditions to facilitate communications among threads,
as well as using the built-in monitor for objects.

7.	 The blocking queues (ArrayBlockingQueue, LinkedBlockingQueue, and
PriorityBlockingQueue) provided in the Java Collections Framework provide auto-
matical synchronization for the access to a queue.

8.	 You can use semaphores to restrict the number of concurrent accesses to a shared
resource.

9.	 Deadlock occurs when two or more threads acquire locks on multiple objects and each
has a lock on one object and is waiting for the lock on the other object. The resource
ordering technique can be used to avoid deadlock.

10.	 The JDK 7’s Fork/Join Framework is designed for developing parallel programs. You
can define a task class that extends RecursiveAction or RecursiveTask and execute
the tasks concurrently in ForkJoinPool and obtain the overall solution after all tasks
are completed.

Quiz

Answer the quiz for this chapter online at the book Companion Website.

Programming Exercises

Sections 32.1–32.5
	*32.1	 (Revise Listing 32.1) Rewrite Listing 32.1 to display the output in a text area, as

shown in Figure 32.30.

Figure 32.30  The output from three threads is displayed in a text area.

M32_LIAN0182_11_SE_C32.indd 38 5/22/17 12:34 PM

Programming Exercises 32-39

	 32.2	 (Racing cars) Rewrite Programming Exercise 15.29 using a thread to control car
racing. Compare the program with Programming Exercise 15.29 by setting the
delay time to 10 in both the programs. Which one runs the animation faster?

	 32.3	 (Raise flags) Rewrite Listing 15.13 using a thread to animate a flag being raised.
Compare the program with Listing 15.13 by setting the delay time to 10 in both
programs. Which one runs the animation faster?

Sections 32.8–32.12
	 32.4	 (Synchronize threads) Write a program that launches 1,000 threads. Each thread

adds 1 to a variable sum that initially is 0. You need to pass sum by reference to
each thread. In order to pass it by reference, define an Integer wrapper object to
hold sum. Run the program with and without synchronization to see its effect.

	 32.5	 (Display a running fan) Rewrite Programming Exercise 15.28 using a thread to
control the fan animation.

	 32.6	 (Bouncing balls) Rewrite Listing 15.17, BallPane.java using a thread to animate
bouncing ball movements.

	 32.7	 (Control a clock) Rewrite Programming Exercise 15.32 using a thread to control
the clock animation.

	 32.8	 (Account synchronization) Rewrite Listing 32.6, ThreadCooperation.java, using the
object’s wait() and notifyAll() methods.

	 32.9	 (Demonstrate ConcurrentModificationException) The iterator is fail-fast.
Write a program to demonstrate it by creating two threads that concurrently access
and modify a set. The first thread creates a hash set filled with numbers and adds
a new number to the set every second. The second thread obtains an iterator for
the set and traverses the set back and forth through the iterator every second. You
will receive a ConcurrentModificationException because the underlying
set is being modified in the first thread while the set in the second thread is being
traversed.

	*32.10	 (Use synchronized sets) Using synchronization, correct the problem
in the preceding exercise so that the second thread does not throw a
ConcurrentModificationException.

Section 32.15
	*32.11	 (Demonstrate deadlock) Write a program that demonstrates deadlock.

Section 32.18
	*32.12	 (Parallel array initializer) Implement the following method using the Fork/Join

Framework to assign random values to the list.

public static void parallelAssignValues(double[] list)

Write a test program that creates a list with 9,000,000 elements and invokes
parallelAssignValues to assign random values to the list. Also implement a
sequential algorithm and compare the execution time of the two. Note if you use
Math.random(), your parallel code execution time will be worse than the sequen-
tial code execution time because Math.random() is synchronized and cannot be
executed in parallel. To fix this problem, create a Random object for assigning
random values to a small list.

M32_LIAN0182_11_SE_C32.indd 39 5/22/17 12:34 PM

32-40 Chapter 32   Multithreading and Parallel Programming

	32.13	 (Generic parallel merge sort) Revise Listing 32.10, ParallelMergeSort.java, to
define a generic parallelMergeSort method as follows:

public static <E extends Comparable<E>> void
 parallelMergeSort(E[] list)

	*32.14	 (Parallel quick sort) Implement the following method in parallel to sort a list using
quick sort (see Listing 23.7):

public static void parallelQuickSort(int[] list)

Write a test program that times the execution time for a list of size 9,000,000 using
this parallel method and a sequential method.

	*32.15	 (Parallel sum) Implement the following method using Fork/Join to find the sum of
a list.

public static double parallelSum(double[] list)

Write a test program that finds the sum in a list of 9,000,000 double values.

	*32.16	 (Parallel matrix addition) Programming Exercise 8.5 describes how to perform
matrix addition. Suppose you have multiple processors, so you can speed up the
matrix addition. Implement the following method in parallel:

public static double[][] parallelAddMatrix(
 double[][] a, double[][] b)

Write a test program that measures the execution time for adding two 2,000 * 2,000
matrices using the parallel method and sequential method, respectively.

	*32.17	 (Parallel matrix multiplication) Programming Exercise 7.6 describes how to
perform matrix multiplication. Suppose that you have multiple processors, so
you can speed up the matrix multiplication. Implement the following method in
parallel:

public static double[][] parallelMultiplyMatrix(
 double[][] a, double[][] b)

Write a test program that measures the execution time for multiplying two
2,000 * 2,000 matrices using the parallel method and sequential method,
respectively.

	*32.18	 (Parallel Eight Queens) Revise Listing 22.11, EightQueens.java, to develop a
parallel algorithm that finds all solutions for the Eight Queens problem. (Hint:
Launch eight subtasks, each of which places the queen in a different column in the
first row.)

Comprehensive
	***32.19	 (Sorting animation) Write an animation for selection sort, insertion sort, and

bubble sort, as shown in Figure 32.31. Create an array of integers 1, 2, . . . , 50.
Shuffle it randomly. Create a pane to display the array in a histogram. You should
invoke each sort method in a separate thread. Each algorithm uses two nested
loops. When the algorithm completes an iteration in the outer loop, put the thread
to sleep for 0.5 seconds and redisplay the array in the histogram. Color the last
bar in the sorted subarray.

M32_LIAN0182_11_SE_C32.indd 40 5/22/17 12:34 PM

Programming Exercises 32-41

Figure 32.31  Three sorting algorithms are illustrated in the animation.

	***32.20	 (Sudoku search animation) Modify Programming Exercise 22.21 to display the
intermediate results of the search. Figure 32.32 gives a snapshot of an animation
in progress with number 2 placed in the cell in Figure 32.32a, number 3 placed
in the cell in Figure 32.32b, and number 3 placed in the cell in Figure 32.32c.
The animation displays all the search steps.

Figure 32.32  The intermediate search steps are displayed in the animation for the Sudoku problem.

(a) (b) (c)

M32_LIAN0182_11_SE_C32.indd 41 5/22/17 12:34 PM

32-42 Chapter 32   Multithreading and Parallel Programming

 Figure 32.33  The intermediate search steps are displayed in the animation for the Eight Queens problem.

	 32.21	 (Combine colliding bouncing balls) Rewrite Programming Exercise 20.5 using
a thread to animate bouncing ball movements.

	***32.22	 (Eight Queens animation) Modify Listing 22.11, EightQueens.java, to display
the intermediate results of the search. As shown in Figure 32.33, the current row
being searched is highlighted. Every one second, a new state of the chess board
is displayed.

M32_LIAN0182_11_SE_C32.indd 42 5/22/17 12:34 PM

