
Objectives
■■ To explain how RMI works (§40.2).

■■ To describe the process of developing RMI applications (§40.3).

■■ To distinguish between RMI and socket-level programming (§40.4).

■■ To develop three-tier applications using RMI (§40.5).

■■ To use callbacks to develop interactive applications (§40.6).

Remote Method
Invocation

CHAPTER

40

M40_LIAN0182_11_SE_C40.indd 1 5/17/17 1:06 PM

40-2 Chapter 40   Remote Method Invocation

40.1  Introduction
Remote Method Invocation is a high-level Java API for Java network programming.

Remote Method Invocation (RMI) provides a framework for building distributed Java systems.
Using RMI, a Java object on one system can invoke a method in an object on another system
on the network. A distributed Java system can be defined as a collection of cooperative dis-
tributed objects on the network. In this chapter, you will learn how to use RMI to create useful
distributed applications.

40.2  RMI Basics
RMI enables you to access a remote object and invoke its methods.

RMI is the Java Distributed Object Model for facilitating communications among distributed
objects. RMI is a high-level API built on top of sockets. Socket-level programming allows
you to pass data through sockets among computers. RMI enables you also to invoke methods
in a remote object. Remote objects can be manipulated as if they were residing on the local
host. The transmission of data among different machines is handled by the JVM transparently.

In many ways, RMI is an evolution of the client/server architecture. A client is a compo-
nent that issues requests for services, and a server is a component that delivers the requested
services. Like the client/server architecture, RMI maintains the notion of clients and servers,
but the RMI approach is more flexible.

■■ An RMI component can act as both a client and a server, depending on the scenario
in question.

■■ An RMI system can pass functionality from a server to a client, and vice versa. Typi-
cally a client/server system only passes data back and forth between server and client.

40.2.1  How Does RMI Work?
All the objects you have used before this chapter are called local objects. Local objects are
accessible only within the local host. Objects that are accessible from a remote host are called
remote objects. For an object to be invoked remotely, it must be defined in a Java interface
accessible to both the server and the client. Furthermore, the interface must extend the java.
rmi.Remote interface. Like the java.io.Serializable interface, java.rmi.Remote
is a marker interface that contains no constants or methods. It is used only to identify remote
objects.

The key components of the RMI architecture are listed below (see Figure 40.1):

■■ Server object interface: A subinterface of java.rmi.Remote that defines the
methods for the server object.

■■ Server class: A class that implements the remote object interface.

■■ Server object: An instance of the server class.

■■ RMI registry: A utility that registers remote objects and provides naming services
for locating objects.

■■ Client program: A program that invokes the methods in the remote server object.

■■ Server stub: An object that resides on the client host and serves as a surrogate for
the remote server object.

■■ Server skeleton: An object that resides on the server host and communicates with
the stub and the actual server object.

Point
Key

Point
Key

M40_LIAN0182_11_SE_C40.indd 2 5/17/17 1:06 PM

40.2  RMI Basics 40-3

RMI works as follows:

1.	 A server object is registered with the RMI registry.

2.	 A client looks through the RMI registry for the remote object.

3.	 Once the remote object is located, its stub is returned in the client.

4.	 The remote object can be used in the same way as a local object. Communication between
the client and the server is handled through the stub and the skeleton.

The implementation of the RMI architecture is complex, but the good news is that RMI pro-
vides a mechanism that liberates you from writing the tedious code for handling parameter
passing and invoking remote methods. The basic idea is to use two helper classes known as
the stub and the skeleton for handling communications between client and server.

The stub and the skeleton are automatically generated. The stub resides on the client
machine. It contains all the reference information the client needs to know about the server
object. When a client invokes a method on a server object, it actually invokes a method that is
encapsulated in the stub. The stub is responsible for sending parameters to the server and for
receiving the result from the server and returning it to the client.

The skeleton communicates with the stub on the server side. The skeleton receives param-
eters from the client, passes them to the server for execution, and returns the result to the stub.

40.2.2  Passing Parameters
When a client invokes a remote method with parameters, passing the parameters is handled
by the stub and the skeleton. Obviously, invoking methods in a remote object on a server is
very different from invoking methods in a local object on a client, since the remote object is
in a different address space on a separate machine. Let us consider three types of parameters:

■■ Primitive data types, such as char, int, double, or boolean, are passed by value
like a local call.

■■ Local object types, such as java.lang.String, are also passed by value, but this
is completely different from passing an object parameter in a local call. In a local call,
an object parameter’s reference is passed, which corresponds to the memory address
of the object. In a remote call, there is no way to pass the object reference, because the
address on one machine is meaningless to a different JVM. Any object can be used as

Figure 40.1  Java RMI uses a registry to provide naming services for remote objects, and
uses the stub and the skeleton to facilitate communications between client and server.

Client Host

Server
StubClient

Program

RMI Registry Host

RMI
Registry

Server Host

Server
Skeleton Server

Object

(1) Register Server Object

(2) Look for Server Object

(3) Return
Server Stub

(4) Data
Communication

Server Object
Interface

Server Object
Interface

M40_LIAN0182_11_SE_C40.indd 3 5/17/17 1:06 PM

40-4 Chapter 40   Remote Method Invocation

a parameter in a remote call as long as it is serializable. The stub serializes the object
parameter and sends it in a stream across the network. The skeleton deserializes the
stream into an object.

■■ Remote object types are passed differently from local objects. When a client invokes
a remote method with a parameter of a remote object type, the stub of the remote
object is passed. The server receives the stub and manipulates the parameter through
it. Passing remote objects will be discussed in Section 40.6, “RMI Callbacks.”

40.2.3  RMI Registry
How does a client locate the remote object? The RMI registry provides the registry services
for the server to register the object and for the client to locate the object.

You can use several overloaded static getRegistry() methods in the LocateRegistry
class to return a reference to a Registry, as shown in Figure 40.2. Once a Registry is
obtained, you can bind an object with a unique name in the registry using the bind or rebind
method or locate an object using the lookup method, as shown in Figure 40.3.

java.rmi.registry.LocateRegistry

+getRegistry(): Registry

+getRegistry(port: int): Registry

+getRegistry(host: String): Registry

+getRegistry(host:String, port: int): Registry

Returns a reference to the remote object Registry for the local host
on the default registry port of 1099.

Returns a reference to the remote object Registry for the local host
on the specified port.

Returns a reference to the remote object Registry on the specified
host on the default registry port of 1099.

Returns a reference to the remote object Registry on the specified
host and port.

Figure 40.2  The LocateRegistry class provides the methods for obtaining a registry on a host.

java.rmi.registry.Registry

+bind(name: String, obj: Remote): void

+rebind(name: String, obj: Remote): void

+unbind(name: String): void

+list(name: String): String[]

+lookup(name: String): Remote

Binds the specified name with the remote object.

Binds the specified name with the remote object. Any
existing binding for the name is replaced.

Destroys the binding for the specified name that is
associated with a remote object.

Returns an array of the names bound in the registry.

Returns a reference, a stub, for the remote object associated
with the specified name.

Figure 40.3  The Registry class provides the methods for binding and obtaining references to remote objects in a
remote object registry.

40.3  Developing RMI Applications
An RMI application consists of defining server object interface, defining a server
object interface implementation class, creating and registering a server object, and
developing a client program.

Now that you have a basic understanding of RMI, you are ready to write simple RMI applica-
tions. The steps in developing an RMI application are shown in Figure 40.4 and listed below.

Point
Key

M40_LIAN0182_11_SE_C40.indd 4 5/17/17 1:06 PM

40.3  Developing RMI Applications 40-5

1.	 Define a server object interface that serves as the contract between the server and its
clients, as shown in the following outline:

public interface ServerInterface extends Remote {
 public void service1(...) throws RemoteException;
 // Other methods
}

A server object interface must extend the java.rmi.Remote interface.

2.	 Define a class that implements the server object interface, as shown in the following
outline:

public class ServerInterfaceImpl extends UnicastRemoteObject
 implements ServerInterface {
 public void service1(...) throws RemoteException {
 // Implement it
 }
 // Implement other methods
}

The server implementation class must extend the java.rmi.server
.UnicastRemoteObject class. The UnicastRemoteObject class provides support
for point-to-point active object references using TCP streams.

3.	 Create a server object from the server implementation class and register it with an RMI
registry:

ServerInterface server = new ServerInterfaceImpl(...);
Registry registry = LocateRegistry.getRegistry();
registry.rebind("RemoteObjectName", server);

4.	 Develop a client that locates a remote object and invokes its methods, as shown in the
following outline:

Registry registry = LocateRegistry.getRegistry(host);
ServerInterface server = (ServerInterfaceImpl)
 registry.lookup("RemoteObjectName");
server.service1(...);

The example that follows demonstrates the development of an RMI application through
these steps.

40.3.1  Example: Retrieving Student Scores from an RMI Server
This example creates a client that retrieves student scores from an RMI server. The client,
shown in Figure 40.5, displays the score for the specified name.

1.	 Create a server interface named StudentServerInterface in Listing 40.1. The
interface tells the client how to invoke the server’s findScore method to retrieve a
student score.

Figure 40.4  The steps in developing an RMI application.

4 2

1 De�ne Server
Object Interface

Develop Client
Program

De�ne Server
Implementation Class

3 Create and Register
Server Object

M40_LIAN0182_11_SE_C40.indd 5 5/17/17 1:06 PM

40-6 Chapter 40   Remote Method Invocation

Listing 40.1  StudentServerInterface.java
 1 import java.rmi.*;
 2
 3 public interface StudentServerInterface extends Remote {
 4 /**
 5 * Return the score for the specified name
 6 * @param name the student name
 7 * @return a double score or –1 if the student is not found
 8 */
 9 public double findScore(String name) throws RemoteException;
10 }

Any object that can be used remotely must be defined in an interface that extends the
java.rmi.Remote interface (line 3). StudentServerInterface, extending Remote,
defines the findScore method that can be remotely invoked by a client to find a stu-
dent’s score. Each method in this interface must declare that it may throw a java.rmi.
RemoteException (line 9). Therefore your client code that invokes this method must
be prepared to catch this exception in a try-catch block.

2.	 Create a server implementation named StudentServerInterfaceImpl (Listing 40.2)
that implements StudentServerInterface. The findScore method returns the
score for a specified student. It returns -1 if the score is not found.

Listing 40.2  StudentServerInterfaceImpl.java
 1 import java.rmi.*;
 2 import java.rmi.server.*;
 3 import java.util.*;
 4
 5 public class StudentServerInterfaceImpl
 6 extends UnicastRemoteObject
 7 implements StudentServerInterface {
 8 // Stores scores in a map indexed by name
 9 private HashMap<String, Double> scores =
10 new HashMap<String, Double>();
11
12 public StudentServerInterfaceImpl() throws RemoteException {
13 initializeStudent();
14 }
15
16 /** Initialize student information */
17 protected void initializeStudent() {
18 scores.put("John", new Double(90.5));
19 scores.put("Michael", new Double(100));
20 scores.put("Michelle", new Double(98.5));
21 }
22
23 /** Implement the findScore method from the
24 * Student interface */
25 public double findScore(String name) throws RemoteException {
26 Double d = (Double)scores.get(name);

Figure 40.5  You can get the score by entering a student name and clicking the Get Score button.

M40_LIAN0182_11_SE_C40.indd 6 5/17/17 1:06 PM

40.3  Developing RMI Applications 40-7

27
28 if (d == null) {
29 System.out.println("Student " + name + " is not found ");
30 return –1;
31 }
32 else {
33 System.out.println("Student " + name + "\'s score is "
34 + d.doubleValue());
35 return d.doubleValue();
36 }
37 }
38 }

The StudentServerInterfaceImpl class implements StudentServerInterface.
This class must also extend the java.rmi.server.RemoteServer class or its
subclass. RemoteServer is an abstract class that defines the methods needed
to create and export remote objects. Often its subclass java.rmi.server.
UnicastRemoteObject is used (line 6). This subclass implements all the abstract
methods defined in RemoteServer.

StudentServerInterfaceImpl implements the findScore method (lines 25–37)
defined in StudentServerInterface. For simplicity, three students, John, Michael,
and Michelle, and their corresponding scores are stored in an instance of java.util.
HashMap named scores. HashMap is a concrete class of the Map interface in the Java
Collections Framework, which makes it possible to search and retrieve a value using a
key. Both values and keys are of Object type. The findScore method returns the score
if the name is in the hash map, and returns -1 if the name is not found.

3.	 Create a server object from the server implementation and register it with the RMI server
(Listing 40.3).

Listing 40.3  RegisterWithRMIServer.java
 1 import java.rmi.registry.*;
 2
 3 public class RegisterWithRMIServer {
 4 /** Main method */
 5 public static void main(String[] args) {
 6 try {
 7 StudentServerInterface obj =
 8 new StudentServerInterfaceImpl();
 9 Registry registry = LocateRegistry.getRegistry();
10 registry.rebind("StudentServerInterfaceImpl", obj);
11 System.out.println("Student server " + obj + " registered");
12 }
13 catch (Exception ex) {
14 ex.printStackTrace();
15 }
16 }
17 }

RegisterWithRMIServer contains a main method, which is responsible for starting
the server. It performs the following tasks: (1) create a server object (line 8); (2) obtain a
reference to the RMI registry (line 9), and (3) register the object in the registry (line 10).

4.	 Create a client named StudentServerInterfaceClient in Listing 40.4. The client
locates the server object from the RMI registry and uses it to find the scores.

Listing 40.4  StudentServerInterfaceClient.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;

M40_LIAN0182_11_SE_C40.indd 7 5/17/17 1:06 PM

40-8 Chapter 40   Remote Method Invocation

 3 import javafx.scene.control.Button;
 4 import javafx.scene.control.Label;
 5 import javafx.scene.control.TextField;
 6 import javafx.scene.layout.GridPane;
 7 import javafx.stage.Stage;
 8 import java.rmi.registry.LocateRegistry;
 9 import java.rmi.registry.Registry;
10
11 public class StudentServerInterfaceClient extends Application {
12 // Declare a Student instance
13 private StudentServerInterface student;
14
15 private Button btGetScore = new Button("Get Score");
16 private TextField tfName = new TextField();
17 private TextField tfScore = new TextField();
18
19 public void start(Stage primaryStage) {
20 GridPane gridPane = new GridPane();
21 gridPane.setHgap(5);
22 gridPane.add(new Label("Name"), 0, 0);
23 gridPane.add(new Label("Score"), 0, 1);
24 gridPane.add(tfName, 1, 0);
25 gridPane.add(tfScore, 1, 1);
26 gridPane.add(btGetScore, 1, 2);
27
28 // Create a scene and place the pane in the stage
29 Scene scene = new Scene(gridPane, 250, 250);
30 primaryStage.setTitle("StudentServerInterfaceClient");
31 primaryStage.setScene(scene); // Place the scene in the stage
32 primaryStage.show(); // Display the stage
33
34 initializeRMI();
35 btGetScore.setOnAction(e − > getScore());
36 }
37
38 private void getScore() {
39 try {
40 // Get student score
41 double score = student.findScore(tfName.getText().trim());
42
43 // Display the result
44 if (score < 0)
45 tfScore.setText("Not found");
46 else
47 tfScore.setText(new Double(score).toString());
48 }
49 catch(Exception ex) {
50 ex.printStackTrace();
51 }
52 }
53
54 /** Initialize RMI */
55 protected void initializeRMI() {
56 String host = "";
57
58 try {
59 Registry registry = LocateRegistry.getRegistry(host);
60 student = (StudentServerInterface)
61 registry.lookup("StudentServerInterfaceImpl");
62 System.out.println("Server object " + student + " found");
63 }
64 catch(Exception ex) {

M40_LIAN0182_11_SE_C40.indd 8 5/17/17 1:06 PM

40.3  Developing RMI Applications 40-9

65 System.out.println(ex);
66 }
67 }
68
69 /**
70 * The main method is only needed for the IDE with limited
71 * JavaFX support. Not needed for running from the command line.
72 */
73 public static void main(String[] args) {
74 launch(args);
75 }
76 }

StudentServerInterfaceClient invokes the findScore method on the server to
find the score for a specified student. The key method in StudentServerInterface-
Client is the initializeRMI method (lines 55–67), which is responsible for locating
the server stub.

The lookup(String name) method (line 61) returns the remote object with the speci-
fied name. Once a remote object is found, it can be used just like a local object. The stub
and the skeleton are used behind the scenes to make the remote method invocation work.

5.	 Follow the steps below to run this example.

	 5.1.	 Start the RMI registry by typing “start rmiregistry” at a DOS prompt from the
book directory. By default, the port number 1099 is used by rmiregistry. To use a
different port number, simply type the command “start rmiregistry portnumber”
at a DOS prompt.

	 5.2.	 Start the server RegisterWithRMIServer using the following command at C:\
book directory:

C:\ book>java RegisterWithRMIServer

	 5.3.	 Run the client StudentServerInterfaceClient as an application. A sample run
of the application is shown in Figure 40.5(b).

Note:
You must start rmiregistry from the directory where you will run the RMI server, as shown
in Figure 40.6. Otherwise, you will receive the error ClassNotFoundException on
StudentServerInterfaceImpl_Stub.

Figure 40.6  To run an RMI program, first start the RMIRegistry, then register the server object with the registry. The
client locates it from the registry.

RMI registry

Start RMI registry

Start RMI server

Run RMI client

M40_LIAN0182_11_SE_C40.indd 9 5/17/17 1:06 PM

40-10 Chapter 40   Remote Method Invocation

Note:
Server, registry, and client can be on three different machines. If you run the client and
the server on separate machines, you need to place StudentServerInterface on
both machines.

Caution:
If you modify the remote object implementation class, you need to restart the server
class to reload the object to the RMI registry. In some old versions of rmiregistry, you
may have to restart rmiregistry.

	40.3.1	 How do you define an interface for a remote object?

	40.3.2	 Describe the roles of the stub and the skeleton.

	40.3.3	 What is java.rmi.Remote? How do you define a server class?

	40.3.4	 What is an RMI registry for? How do you create an RMI registry?

	40.3.5	 What is the command to start an RMI registry?

	40.3.6	 How do you register a remote object with the RMI registry?

	40.3.7	 What is the command to start a custom RMI server?

	40.3.8	 How does a client locate a remote object stub through an RMI registry?

	40.3.9	 How do you obtain a registry? How do you register a remote object? How do you
locate remote object?

40.4  RMI vs. Socket-Level Programming
RMI is a high-level network programming and socket-level network programming is
low-low-level.

RMI enables you to program at a higher level of abstraction. It hides the details of socket
server, socket, connection, and sending or receiving data. It even implements a multithreading
server under the hood, whereas with socket-level programming, you have to explicitly imple-
ment threads for handling multiple clients.

RMI applications are scalable and easy to maintain. You can change the RMI server or
move it to another machine without modifying the client program except for resetting the URL
to locate the server. (To avoid resetting the URL, you can modify the client to pass the URL
as a command-line parameter.) In socket-level programming, a client operation to send data
requires a server operation to read it. The implementation of client and server at the socket
level is tightly synchronized.

RMI clients can directly invoke the server method, whereas socket-level programming
is limited to passing values. Socket-level programming is very primitive. Avoid using it to
develop client/server applications. As an analogy, socket-level programming is like program-
ming in assembly language, whereas RMI programming is like programming in a high-level
language.

	40.10	 What are the advantages of RMI over socket-level programming?

40.5  Developing Three-Tier Applications Using RMI
RMI can be used in the middle between a client and a database to develop scalable
and flexible business applications.

Three-tier applications have gained considerable attention in recent years, largely because of
the demand for more scalable and load-balanced systems to replace traditional two-tier client/
server database systems. A centralized database system does not just handle data access, but
it also processes the business rules on data. Thus, a centralized database is usually heavily

Point
Check

Point
Key

Point
Check

Point
Key

M40_LIAN0182_11_SE_C40.indd 10 5/17/17 1:06 PM

40.5  Developing Three-Tier Applications Using RMI 40-11

loaded, because it requires extensive data manipulation and processing. In some situations,
data processing is handled by the client and business rules are stored on the client side. It is
preferable to use a middle tier as a buffer between client and database. The middle tier can be
used to apply business logic and rules, and to process data to reduce the load on the database.

A three-tier architecture does more than just reduce the processing load on the server. It also
provides access to multiple network sites. This is especially useful to Java clients that need to
access multiple databases on different servers, since the server may change.

To demonstrate, let us rewrite the example in Section 40.3.1, “Example: Retrieving Student
Scores from an RMI Server,” to find scores stored in a database rather than a hash map. In
addition, the system is capable of blocking a client from accessing a student who has not given
the university permission to publish his/her score. An RMI component is developed to serve as
a middle tier between client and database; it sends a search request to the database, processes
the result, and returns an appropriate value to the client.

For simplicity, this example reuses the StudentServerInterface interface and Stu-
dentServerInterfaceClient class from Section 40.3.1 with no modifications. All you
have to do is to provide a new implementation for the server interface and create a program to
register the server with the RMI. Here are the steps to complete the program:

1.	 Store the scores in a database table named Score that contains three columns: name,
score, and permission. The permission value is 1 or 0, which indicates whether the
student has given the university permission to release his/her grade. The following is the
statement to create the table and insert three records:

create table Scores (name varchar(20),
 score number, permission number);

insert into Scores values ('John', 90.5, 1);
insert into Scores values ('Michael', 100, 1);
insert into Scores values ('Michelle', 100, 0);

2.	 Create a new server implementation named Student3TierImpl in Listing 40.5. The
server retrieves a record from the Scores table, processes the retrieved information, and
sends the result back to the client.

Listing 40.5  Student3TierImpl.java
 1 import java.rmi.*;
 2 import java.rmi.server.*;
 3 import java.sql.*;
 4
 5 public class Student3TierImpl extends UnicastRemoteObject
 6 implements StudentServerInterface {
 7 // Use prepared statement for querying DB
 8 private PreparedStatement pstmt;
 9
10 /** Constructs Student3TierImpl object and exports it on
11 * default port.
12 */
13 public Student3TierImpl() throws RemoteException {
14 initializeDB();
15 }
16
17 /** Constructs Student3TierImpl object and exports it on
18 * specified port.
19 * @param port The port for exporting
20 */
21 public Student3TierImpl(int port) throws RemoteException {
22 super(port);

M40_LIAN0182_11_SE_C40.indd 11 5/17/17 1:06 PM

40-12 Chapter 40   Remote Method Invocation

23 initializeDB();
24 }
25
26 /** Load JDBC driver, establish connection and
27 * create statement */
28 protected void initializeDB() {
29 try {
30 // Load the JDBC driver
31 // Class.forName("oracle.jdbc.driver.OracleDriver");
32 Class.forName("com.mysql.jdbc.Driver ");
33
34 System.out.println("Driver registered");
35
36 // Establish connection
37 /*Connection conn = DriverManager.getConnection
38 ("jdbc:oracle:thin:@drake.armstrong.edu:1521:orcl",
39 "scott", "tiger"); */
40 Connection conn = DriverManager.getConnection
41 ("jdbc:mysql://localhost/javabook", "scott", "tiger");
42 System.out.println("Database connected");
43
44 // Create a prepared statement for querying DB
45 pstmt = conn.prepareStatement(
46 "select * from Scores where name = ?");
47 }
48 catch (Exception ex) {
49 System.out.println(ex);
50 }
51 }
52
53 /** Return the score for specified the name
54 * Return −1 if score is not found.
55 */
56 public double findScore(String name) throws RemoteException {
57 double score = −1;
58 try {
59 // Set the specified name in the prepared statement
60 pstmt.setString(1, name);
61
62 // Execute the prepared statement
63 ResultSet rs = pstmt.executeQuery();
64
65 // Retrieve the score
66 if (rs.next()) {
67 if (rs.getBoolean(3))
68 score = rs.getDouble(2);
69 }
70 }
71 catch (SQLException ex) {
72 System.out.println(ex);
73 }
74
75 return score;
76 }
77 }

Student3TierImpl is similar to StudentServerInterfaceImpl in Section 40.3.1 except
that the Student3TierImpl class finds the score from a JDBC data source instead
from a hash map.

M40_LIAN0182_11_SE_C40.indd 12 5/17/17 1:06 PM

40.6  RMI Callbacks 40-13

The table named Scores consists of three columns, name, score, and permission,
where the latter indicates whether the student has given permission to show his/her score.
Since SQL does not support a boolean type, permission is defined as a number whose
value of 1 indicates true and of 0 indicates false.

	 The initializeDB() method (lines 28–51) establishes connections with the data-
base and creates a prepared statement for processing the query.

	 The findScore method (lines 56–76) sets the name in the prepared statement,
executes the statement, processes the result, and returns the score for a student whose
permission is true.

3.	 Write a main method in the class RegisterStudent3TierServer (Listing 40.6)
that registers the server object using StudentServerInterfaceImpl, the same name as
in Listing 40.2, so that you can use StudentServerInterfaceClient, created in
Section 40.3.1, to test the server.

Listing 40.6  RegisterStudent3TierServer.java
 1 import java.rmi.registry.*;
 2
 3 public class RegisterStudent3TierServer {
 4 public static void main(String[] args) {
 5 try {
 6 StudentServerInterface obj = new Student3TierImpl();
 7 Registry registry = LocateRegistry.getRegistry();
 8 registry.rebind("StudentServerInterfaceImpl", obj);
 9 System.out.println("Student server " + obj + " registered");
10 } catch (Exception ex) {
11 ex.printStackTrace();
12 }
13 }
14 }

4.	 Follow the steps below to run this example.

	 4.1.	 Start RMI registry by typing “start rmiregistry” at a DOS prompt from the book
directory.

	 4.2.	 Start the server RegisterStudent3TierServer using the following command
at the C:\ book directory:

C:\ book>java RegisterStudent3TierServer

	 4.3.	 Run the client StudentServerInterfaceClient. A sample run is shown in
Figure 40.6.

	40.5.1	 Describe how parameters are passed in RMI.

40.6  RMI Callbacks
RMI callbacks enable the server to invoke the methods on a client.

In a traditional client/server system, a client sends a request to a server, and the server pro-
cesses the request and returns the result to the client. The server cannot invoke the methods on
a client. One important benefit of RMI is that it supports callbacks, which enable the server
to invoke methods on the client. With the RMI callback feature, you can develop interactive
distributed applications.

Point
Check

Point
Key

M40_LIAN0182_11_SE_C40.indd 13 5/17/17 1:06 PM

40-14 Chapter 40   Remote Method Invocation

In Section 33.6, “Case Studies: Distributed TicTacToe Games,” you developed a distributed
TicTacToe game using stream socket programming. The example that follows demonstrates
the use of the RMI callback feature to develop an interactive TicTacToe game.

All the examples you have seen so far in this chapter have simple behaviors that are easy
to model with classes. The behavior of the TicTacToe game is somewhat complex. To create
the classes to model the game, you need to study and understand it and distribute the process
appropriately between client and server.

Clearly the client should be responsible for handling user interactions, and the server
should coordinate with the client. Specifically, the client should register with the server, and
the server can take two and only two players. Once a client makes a move, it should notify the
server; the server then notifies the move to the other player. The server should determine
the status of the game—that is, whether it has been won or drawn—and notify the players.
The server should also coordinate the turns—that is, which client has the turn at a given time.
The ideal approach for notifying a player is to invoke a method in the client that sets appropri-
ate properties in the client or sends messages to a player. Figure 40.7 illustrates the relation-
ship between clients and server.

Figure 40.7  The server coordinates the activities with the clients.

Client 1:
A client makes two kinds of calls:
1. Request to play the game.
2. Notify the server of the move.

Client 2:
A client makes two kinds of calls:
1. Request to play the game.
2. Notify the server of the move.

Server:
The server makes three kinds of calls:
1. Notify a client of the other
 client’s move.
2. Notify the game status.
3. Coordinate the turn.

All the calls a client makes can be encapsulated in one remote interface named TicTacToe
(Listing 40.7), and all the calls the server invokes can be defined in another interface named
CallBack (Listing 40.8). These two interfaces are defined as follows:

Listing 40.7  TicTacToeInterface.java
 1 import java.rmi.*;
 2
 3 public interface TicTacToeInterface extends Remote {
 4 /**
 5 * Connect to the TicTacToe server and return the token.
 6 * If the returned token is ' ', the client is not connected to
 7 * the server
 8 */
 9 public char connect(CallBack client) throws RemoteException;
10
11 /** A client invokes this method to notify the server of its move*/
12 public void myMove(int row, int column, char token)
13 throws RemoteException;
14 }

M40_LIAN0182_11_SE_C40.indd 14 5/17/17 1:06 PM

40.6  RMI Callbacks 40-15

Listing 40.8  CallBack.java
 1 import java.rmi.*;
 2
 3 public interface CallBack extends Remote {
 4 /** The server notifies the client for taking a turn */
 5 public void takeTurn(boolean turn) throws RemoteException;
 6
 7 /** The server sends a message to be displayed by the client */
 8 public void notify(java.lang.String message)
 9 throws RemoteException;
10
11 /** The server notifies a client of the other player's move */
12 public void mark(int row, int column, char token)
13 throws RemoteException;
14 }

What does a client need to do? The client interacts with the player. Assume that all the cells are
initially empty, and that the first player takes the X token and the second player the O token. To
mark a cell, the player points the mouse to the cell and clicks it. If the cell is empty, the token
(X or O) is displayed. If the cell is already filled, the player’s action is ignored.

From the preceding description, it is obvious that a cell is a GUI object that handles mouse-
click events and displays tokens. The candidate for such an object could be a button or a panel.
Panels are more flexible than buttons. The token (X or O) can be drawn on a panel in any size,
but it can be displayed only as a label on a button.

Let Cell be a subclass of JPanel. You can declare a 3 * 3 grid to be an array Cell[]
[] cell = new Cell[3][3] for modeling the game. How do you know the state of a cell
(marked or not)? You can use a property named marked of the boolean type in the Cell
class. How do you know whether the player has a turn? You can use a property named myTurn
of boolean. This property (initially false) can be set by the server through a callback.

The Cell class is responsible for drawing the token when an empty cell is clicked, so you
need to write the code for listening to the MouseEvent and for painting the shape for tokens
X and O. To determine which shape to draw, introduce a variable named marker of the char
type. Since this variable is shared by all the cells in a client, it is preferable to declare it in the
client and to declare the Cell class as an inner class of the client so that this variable will be
accessible to all the cells.

Now let us turn our attention to the server side. What does the server need to do? The
server needs to implement TicTacToeInterface and notify the clients of the game status.
The server has to record the moves in the cells and check the status every time a player
makes a move. The status information can be kept in a 3 * 3 array of char. You can imple-
ment a method named isFull() to check whether the board is full and a method named
isWon(token) to check whether a specific player has won.

Once a client is connected to the server, the server notifies the client which token to use—
that is, X for the first client and O for the second. Once a client notifies the server of its move,
the server checks the game status and notifies the clients.

Now the most critical question is how the server notifies a client. You know that a client
invokes a server method by creating a server stub on the client side. A server cannot directly
invoke a client, because the client is not declared as a remote object. The CallBack interface
was created to facilitate the server’s callback to the client. In the implementation of CallBack,
an instance of the client is passed as a parameter in the constructor of CallBack. The client
creates an instance of CallBack and passes its stub to the server, using a remote method
named connect() defined in the server. The server then invokes the client’s method through
a CallBack instance. The triangular relationship of client, CallBack implementation, and
server is shown in Figure 40.8.

M40_LIAN0182_11_SE_C40.indd 15 5/17/17 1:06 PM

40-16 Chapter 40   Remote Method Invocation

Here are the steps to complete the example.

1.	 Create TicTacToeImpl.java (Listing 40.9) to implement TicTacToeInterface. Add a
main method in the program to register the server with the RMI.

Listing 40.9  TicTacToeImpl.java
 1 import java.rmi.*;
 2 import java.rmi.server.*;
 3 import java.rmi.registry.*;
 4 import java.rmi.registry.*;
 5
 6 public class TicTacToeImpl extends UnicastRemoteObject
 7 implements TicTacToeInterface {
 8 // Declare two players, used to call players back
 9 private CallBack player1 = null;
 10 private CallBack player2 = null;
 11
 12 // board records players' moves
 13 private char[][] board = new char[3][3];
 14
 15 /** Constructs TicTacToeImpl object and
 16 exports it on default port.
 17 */
 18 public TicTacToeImpl() throws RemoteException {
 19 super();
 20 }
 21
 22 /** Constructs TicTacToeImpl object and exports it on specified
 23 * port.
 24 * @param port The port for exporting
 25 */

Figure 40.8  The server receives a CallBack stub from the client and invokes the remote
methods defined in the CallBack interface, which can invoke the methods defined in the client.

Client

An instance of
CallBackImpl
created

Client methods
invoked by the
methods in
CallBackImpl

Server

Receive a stub
of CallBack

Server invokes
remote object’s
methods

CallBackImpl

An instance of
Client created

The remote
methods in
CallBack

M40_LIAN0182_11_SE_C40.indd 16 5/17/17 1:06 PM

40.6  RMI Callbacks 40-17

 26 public TicTacToeImpl(int port) throws RemoteException {
 27 super(port);
 28 }
 29
 30 /**
 31 * Connect to the TicTacToe server and return the token.
 32 * If the returned token is ' ', the client is not connected to
 33 * the server
 34 */
 35 public char connect(CallBack client) throws RemoteException {
 36 if (player1 == null) {
 37 // player1 (first player) registered
 38 player1 = client;
 39 player1.notify("Wait for a second player to join");
 40 return 'X';
 41 }
 42 else if (player2 == null) {
 43 // player2 (second player) registered
 44 player2 = client;
 45 player2.notify("Wait for the first player to move");
 46 player2.takeTurn(false);
 47 player1.notify("It is my turn (X token)");
 48 player1.takeTurn(true);
 49 return 'O';
 50 }
 51 else {
 52 // Already two players
 53 client.notify("Two players are already in the game");
 54 return ' ';
 55 }
 56 }
 57
 58 /** A client invokes this method to notify the
 59 server of its move*/
 60 public void myMove(int row, int column, char token)
 61 throws RemoteException {
 62 // Set token to the specified cell
 63 board[row][column] = token;
 64
 65 // Notify the other player of the move
 66 if (token == 'X')
 67 player2.mark(row, column, 'X');
 68 else
 69 player1.mark(row, column, 'O');
 70
 71 // Check if the player with this token wins
 72 if (isWon(token)) {
 73 if (token == 'X') {
 74 player1.notify("I won!");
 75 player2.notify("I lost!");
 76 player1.takeTurn(false);
 77 }
 78 else {
 79 player2.notify("I won!");
 80 player1.notify("I lost!");
 81 player2.takeTurn(false);
 82 }
 83 }
 84 else if (isFull()) {
 85 player1.notify("Draw!");
 86 player2.notify("Draw!");

M40_LIAN0182_11_SE_C40.indd 17 5/17/17 1:06 PM

40-18 Chapter 40   Remote Method Invocation

 87 }
 88 else if (token == 'X') {
 89 player1.notify("Wait for the second player to move");
 90 player1.takeTurn(false);
 91 player2.notify("It is my turn, (O token)");
 92 player2.takeTurn(true);
 93 }
 94 else if (token == 'O') {
 95 player2.notify("Wait for the first player to move");
 96 player2.takeTurn(false);
 97 player1.notify("It is my turn, (X token)");
 98 player1.takeTurn(true);
 99 }
100 }
101
102 /** Check if a player with the specified token wins */
103 public boolean isWon(char token) {
104 for (int i = 0; i < 3; i++)
105 if ((board[i][0] == token) && (board[i][1] == token)
106 && (board[i][2] == token))
107 return true;
108
109 for (int j = 0; j < 3; j++)
110 if ((board[0][j] == token) && (board[1][j] == token)
111 && (board[2][j] == token))
112 return true;
113
114 if ((board[0][0] == token) && (board[1][1] == token)
115 && (board[2][2] == token))
116 return true;
117
118 if ((board[0][2] == token) && (board[1][1] == token)
119 && (board[2][0] == token))
120 return true;
121
122 return false;
123 }
124
125 /** Check if the board is full */
126 public boolean isFull() {
127 for (int i = 0; i < 3; i++)
128 for (int j = 0; j < 3; j++)
129 if (board[i][j] == '\u0000')
130 return false;
131
132 return true;
133 }
134
135 public static void main(String[] args) {
136 try {
137 TicTacToeInterface obj = new TicTacToeImpl();
138 Registry registry = LocateRegistry.getRegistry();
139 registry.rebind("TicTacToeImpl", obj);
140 System.out.println("Server " + obj + " registered");
141 }
142 catch (Exception ex) {
143 ex.printStackTrace();
144 }
145 }
146 }

M40_LIAN0182_11_SE_C40.indd 18 5/17/17 1:06 PM

40.6  RMI Callbacks 40-19

2.	 Create CallBackImpl.java (Listing 40.10) to implement the CallBack interface.

Listing 40.10  CallBackImpl.java
 1 import java.rmi.*;
 2 import java.rmi.server.*;
 3
 4 public class CallBackImpl extends UnicastRemoteObject
 5 implements CallBack {
 6 // The client will be called by the server through callback
 7 private TicTacToeClientRMI thisClient;
 8
 9 /** Constructor */
10 public CallBackImpl(Object client) throws RemoteException {
11 thisClient = (TicTacToeClientRMI)client;
12 }
13
14 /** The server notifies the client for taking a turn */
15 public void takeTurn(boolean turn) throws RemoteException {
16 thisClient.setMyTurn(turn);
17 }
18
19 /** The server sends a message to be displayed by the client */
20 public void notify(String message)throws RemoteException {
21 thisClient.setMessage(message);
22 }
23
24 /** The server notifies a client of the other player's move */
25 public void mark(int row, int column, char token)
26 throws RemoteException {
27 thisClient.mark(row, column, token);
28 }
29 }

3.	 Create a client named TicTacToeClientRMI (Listing 40.11) for interacting with a
player and communicating with the server. Enable it to run standalone.

Listing 40.11  TicTacToeClientRMI.java
 1 import java.rmi.*;
 2
 3 import javafx.application.Application;
 4 import javafx.application.Platform;
 5 import javafx.stage.Stage;
 6 import javafx.scene.Scene;
 7 import javafx.scene.control.Label;
 8 import javafx.scene.layout.BorderPane;
 9 import javafx.scene.layout.GridPane;
 10 import javafx.scene.layout.Pane;
 11 import javafx.scene.paint.Color;
 12 import javafx.scene.shape.Line;
 13 import javafx.scene.shape.Ellipse;
 14
 15 import java.rmi.registry.Registry;
 16 import java.rmi.registry.LocateRegistry;
 17
 18 public class TicTacToeClientRMI extends Application {
 19 // marker is used to indicate the token type
 20 private char marker;
 21
 22 // myTurn indicates whether the player can move now
 23 private boolean myTurn = false;

M40_LIAN0182_11_SE_C40.indd 19 5/17/17 1:06 PM

40-20 Chapter 40   Remote Method Invocation

 24
 25 // Indicate which player has a turn, initially it is the X player
 26 private char whoseTurn = 'X';
 27
 28 // Create and initialize cell
 29 private Cell[][] cell = new Cell[3][3];
 30
 31 // Create and initialize a status label
 32 private Label lblStatus = new Label("X's turn to play");
 33
 34 // ticTacToe is the game server for coordinating
 35 // with the players
 36 private TicTacToeInterface ticTacToe;
 37
 38 private Label lblIdentification = new Label();
 39
 40 @Override // Override the start method in the Application class
 41 public void start(Stage primaryStage) {
 42 // Pane to hold cell
 43 GridPane pane = new GridPane();
 44 for (int i = 0; i < 3; i++)
 45 for (int j = 0; j < 3; j++)
 46 pane.add(cell[i][j] = new Cell(i, j), j, i);
 47
 48 BorderPane borderPane = new BorderPane();
 49 borderPane.setCenter(pane);
 50 borderPane.setTop(lblStatus);
 51 borderPane.setBottom(lblIdentification);
 52
 53 // Create a scene and place it in the stage
 54 Scene scene = new Scene(borderPane, 450, 170);
 55 primaryStage.setTitle("TicTacToe"); // Set the stage title
 56 primaryStage.setScene(scene); // Place the scene in the stage
 57 primaryStage.show(); // Display the stage
 58
 59 new Thread(() −> {
 60 try {
 61 initializeRMI();
 62 }
 63 catch (Exception ex) {
 64 ex.printStackTrace();
 65 }}).start();
 66 }
 67
 68 /** Initialize RMI */
 69 protected boolean initializeRMI() throws Exception {
 70 String host = "";
 71
 72 try {
 73 Registry registry = LocateRegistry.getRegistry(host);
 74 ticTacToe = (TicTacToeInterface)
 75 registry.lookup("TicTacToeImpl");
 76 System.out.println
 77 ("Server object " + ticTacToe + " found");
 78 }
 79 catch (Exception ex) {
 80 System.out.println(ex);
 81 }
 82
 83 // Create callback for use by the
 84 // server to control the client

M40_LIAN0182_11_SE_C40.indd 20 5/17/17 1:06 PM

40.6  RMI Callbacks 40-21

 85 CallBackImpl callBackControl = new CallBackImpl(this);
 86
 87 if (
 88 (marker =
 89 ticTacToe.connect((CallBack)callBackControl)) != ' ')
 90 {
 91 System.out.println("connected as " + marker + " player.");
 92 Platform.runLater(() −>
 93 lblIdentification.setText("You are player " + marker));
 94 return true;
 95 }
 96 else {
 97 System.out.println("already two players connected as ");
 98 return false;
 99 }
100 }
101
102 /** Set variable myTurn to true or false */
103 public void setMyTurn(boolean myTurn) {
104 this.myTurn = myTurn;
105 }
106
107 /** Set message on the status label */
108 public void setMessage(String message) {
109 Platform.runLater(() −> lblStatus.setText(message));
110 }
111
112 /** Mark the specified cell using the token */
113 public void mark(int row, int column, char token) {
114 cell[row][column].setToken(token);
115 }
116
117 // An inner class for a cell
118 public class Cell extends Pane {
119 // marked indicates whether the cell has been used
120 private boolean marked = false;
121
122 // row and column indicate where the cell appears on the board
123 int row, column;
124
125 // Token used for this cell
126 private char token = ' ';
127
128 public Cell(final int row, final int column) {
129 this.row = row;
130 this.column = column;
131 setStyle("-fx-border-color: black");
132 this.setPrefSize(2000, 2000);
133 this.setOnMouseClicked(e −> handleMouseClick());
134 }
135
136 /** Return token */
137 public char getToken() {
138 return token;
139 }
140
141 /** Set a new token */
142 public void setToken(char c) {
143 token = c;
144 marked = true;
145

M40_LIAN0182_11_SE_C40.indd 21 5/17/17 1:06 PM

40-22 Chapter 40   Remote Method Invocation

146 if (token == 'X') {
147 Line line1 = new Line(10, 10,
148 this.getWidth() − 10, this.getHeight() − 10);
149 line1.endXProperty().bind(this.widthProperty().subtract(10));
150 line1.endYProperty().bind(this.heightProperty().subtract(10));
151 Line line2 = new Line(10, this.getHeight() − 10,
152 this.getWidth() − 10, 10);
153 line2.startYProperty().bind(
154 this.heightProperty().subtract(10));
155 line2.endXProperty().bind(this.widthProperty().subtract(10));
156
157 // Add the lines to the pane
158 Platform.runLater(() −>
159 this.getChildren().addAll(line1, line2));
160 }
161 else if (token == 'O') {
162 Ellipse ellipse = new Ellipse(this.getWidth() / 2,
163 this.getHeight() / 2, this.getWidth() / 2 − 10,
164 this.getHeight() / 2 − 10);
165 ellipse.centerXProperty().bind(
166 this.widthProperty().divide(2));
167 ellipse.centerYProperty().bind(
168 this.heightProperty().divide(2));
169 ellipse.radiusXProperty().bind(
170 this.widthProperty().divide(2).subtract(10));
171 ellipse.radiusYProperty().bind(
172 this.heightProperty().divide(2).subtract(10));
173 ellipse.setStroke(Color.BLACK);
174 ellipse.setFill(Color.WHITE);
175
176 Platform.runLater(() −>
177 getChildren().add(ellipse)); // Add the ellipse to the pane
178 }
179 }
180
181 /* Handle a mouse click event */
182 private void handleMouseClick() {
183 if (myTurn && !marked) {
184 // Mark the cell
185 setToken(marker);
186
187 // Notify the server of the move
188 try {
189 ticTacToe.myMove(row, column, marker);
190 }
191 catch (RemoteException ex) {
192 System.out.println(ex);
193 }
194 }
195 }
196 }
197
198 /**
199 * The main method is only needed for the IDE with limited
200 * JavaFX support. Not needed for running from the command line.
201 */
202 public static void main(String[] args) {
203 launch(args);
204 }
205 }

M40_LIAN0182_11_SE_C40.indd 22 5/17/17 1:06 PM

40.6  RMI Callbacks 40-23

4.	 Follow the steps below to run this example.

	 4.1.	 Start RMI registry by typing “start rmiregistry” at a DOS prompt from the book
directory.

	 4.2.	 Start the server TicTacToeImpl using the following command at the C:\ book
directory:

C:\ book>java TicTacToeImpl

	 4.3.	 Run the client TicTacToeClientRMI. A sample run is shown in Figure 40.9.

TicTacToeInterface defines two remote methods, connect(CallBack client) and
myMove(int row, int column, char token). The connect method plays two roles:
one is to pass a CallBack stub to the server, and the other is to let the server assign a token for
the player. The myMove method notifies the server that the player has made a specific move.

The CallBack interface defines three remote methods, takeTurn(boolean turn),
notify(String message), and mark(int row, int column, char token). The
takeTurn method sets the client’s myTurn property to true or false. The notify method
displays a message on the client’s status label. The mark method marks the client’s cell with
the token at the specified location.

TicTacToeImpl is a server implementation for coordinating with the clients and managing
the game. The variables player1 and player2 are instances of CallBack, each of which
corresponds to a client, passed from a client when the client invokes the connect method. The
variable board records the moves by the two players. This information is needed to determine
the game status. When a client invokes the connect method, the server assigns a token X for
the first player and O for the second player, and accepts only two players. You can modify the
program to accept additional clients as observers. See Exercise 40.7 for more details.

Once two players are in the game, the server coordinates the turns between them. When a
client invokes the myMove method, the server records the move and notifies the other player
by marking the other player’s cell. It then checks to see whether the player wins or whether
the board is full. If neither condition applies and therefore the game continues, the server gives
a turn to the other player.

The CallBackImpl implements the CallBack interface. It creates an instance of
TicTacToeClientRMI through its constructor. The CallBackImpl relays the server
request to the client by invoking the client’s methods. When the server invokes the takeTurn
method, CallBackImpl invokes the client’s setMyTurn() method to set the property
myTurn in the client. When the server invokes the notify() method, CallBackImpl
invokes the client’s setMessage() method to set the message on the client’s status label.
When the server invokes the mark method, CallBackImpl invokes the client’s mark method
to mark the specified cell.

Figure 40.9  Two players play each other through the RMI server.

M40_LIAN0182_11_SE_C40.indd 23 5/17/17 1:06 PM

40-24 Chapter 40   Remote Method Invocation

Interestingly, obtaining the TicTacToeImpl stub for the client is different from obtain-
ing the CallBack stub for the server. The TicTacToeImpl stub is obtained by invoking the
lookup() method through the RMI registry, and the CallBack stub is passed to the server
through the connect method in the TicTacToeImpl stub. It is a common practice to obtain
the first stub with the lookup method, but to pass the subsequent stubs as parameters through
remote method invocations.

Since the variables myTurn and marker are defined in TicTacToeClientRMI, the Cell
class is defined as an inner class within TicTacToeClientRMI in order to enable all the cells
in the client to access them. Exercise 40.8 suggests alternative approaches that implement the
Cell as a noninner class.

	40.6.1	 What is the problem if the connect method in the TicTacToeInterface is
defined as

public boolean connect(CallBack client, char token)
 throws RemoteException;

or as

public boolean connect(CallBack client, Character token)
 throws RemoteException;

	40.6.2	 What is callback? How does callback work in RMI?

Point
Check

Key Terms

callback  40-13
RMI registry  40-3

skeleton  40-3
stub  40-3

Chapter Summary

1.	 RMI is a high-level Java API for building distributed applications using distributed
objects.

2.	 The key idea of RMI is its use of stubs and skeletons to facilitate communications
between objects. The stub and skeleton are automatically generated, which relieves pro-
grammers of tedious socket-level network programming.

3.	 For an object to be used remotely, it must be defined in an interface that extends the
java.rmi.Remote interface.

4.	 In an RMI application, the initial remote object must be registered with the RMI registry
on the server side and be obtained using the lookup method through the registry on the
client side. Subsequent uses of stubs of other remote objects may be passed as parameters
through remote method invocations.

5.	 RMI is especially useful for developing scalable and load-balanced multitier distributed
applications.

 Quiz

Answer the quiz for this chapter online at the book Companion Website.

M40_LIAN0182_11_SE_C40.indd 24 5/17/17 1:06 PM

Programming Exercises   40-25

Programming Exercises

Section 40.3
	*40.1	 (Limit the number of clients) Modify the example in Section 40.3.1, “Example:

Retrieving Student Scores from an RMI Server,” to limit the number of concurrent
clients to 10.

	*40.2	 (Compute loan) Rewrite Programming Exercise 33.1 using RMI. You need to define
a remote interface for computing monthly payment and total payment.

	**40.3	 (Web visit count) Rewrite Programming Exercise 33.4 using RMI. You need to
define a remote interface for obtaining and increasing the count.

	**40.4	 (Display and add addresses) Rewrite Programming Exercise 33.6 using RMI.
You need to define a remote interface for adding addresses and retrieving address
information.

Section 40.5
	**40.5	 (Address in a database table) Rewrite Programming Exercise 40.4. Assume that

the address is stored in a table.

	**40.6	 (Three-tier application) Use the three-tier approach to modify Programming
Exercise 40.4, as follows:

■■ Create a JavaFX client to manipulate student information, as shown in
Figure 33.23a.

■■ Create a remote object interface with methods for retrieving, inserting, and
updating student information, and an object implementation for the interface.

Section 40.6
	**40.7	 (Chat) Rewrite Programming Exercise 33.13 using RMI. You need to define a

remote interface for sending and receiving a message.

	**40.8	 (Improve TicTacToe) Modify the TicTacToe example in Section 40.6, “RMI
Callbacks,” as follows:

■■ Allow a client to connect to the server as an observer to watch the game.
■■ Rewrite the Cell class as a noninner class.

M40_LIAN0182_11_SE_C40.indd 25 5/17/17 1:06 PM

