
Objectives
■■ To know what a 2–4 tree is (§42.1).

■■ To design the Tree24 class that implements the Tree interface (§42.2).

■■ To search an element in a 2–4 tree (§42.3).

■■ To insert an element in a 2–4 tree and know how to split a node (§42.4).

■■ To delete an element from a 2–4 tree and know how to perform transfer
and fusion operations (§42.5).

■■ To traverse elements in a 2–4 tree (§42.6).

■■ To implement and test the Tree24 class (§§42.7–42.8).

■■ To analyze the complexity of the 2–4 tree (§42.9).

■■ To use B-trees for indexing large amount of data (§42.10).

2–4 Trees and B-Trees

CHAPTER

42

M42_LIAN0182_11_SE_C42.indd 1 11/05/17 10:17 am

42-2 Chapter 42 2–4 Trees and B-Trees

42.1 Introduction
A 2–4 tree, also known as a 2–3–4 tree, is a completely balanced search tree with all
leaf nodes appearing on the same level.

In a 2–4 tree, a node may have one, two, or three elements. An interior 2-node contains one
element and two children. An interior 3-node contains two elements and three children. An
interior 4-node contains three elements and four children, as shown in Figure 42.1.

Point
Key

Figure 42.1 An interior node of a 2–4 tree has two, three, or four children.

(a) 2-node (b) 3-node (c) 4-node

c1c0

e0

c2c0 c1 c2 c3c0 c1

e0 e1 e2e0 e1

Figure 42.2 A 2–4 tree is a full complete search tree.

20

15 27 34

29 50 60 703 16 23 24 25

Each child is a sub 2–4 tree, possibly empty. The root node has no parent, and leaf nodes
have no children. The elements in the tree are distinct. The elements in a node are ordered
such that

E(c0) 6 e0 6 E(c1) 6 e1 6 E(c2) 6 e2 6 E(c3)

where E(ck) denote the elements in ck . Figure 42.2 shows an example of a 2–4 tree. ck is called
the left subtree of ek and ck + 1 is called the right subtree of ek .

In a binary tree, each node contains one element. A 2–4 tree tends to be shorter than a
corresponding binary search tree, since a 2–4 tree node may contain two or three elements.

Pedagogical Note
Run from http://liveexample.pearsoncmg.com/dsanimation/24Tree.html to see how a
2–4 tree works, as shown in Figure 42.3.

42.2 Designing Classes for 2–4 Trees
The Tree24 class defines a 2–4 tree and provides methods for searching, inserting,
and deleting elements.

The Tree24 class can be designed by implementing the Tree interface, as shown in
 Figure 42.4. The Tree interface was defined in Listing 27.3 Tree.java. The Tree24Node class
defines tree nodes. The elements in the node are stored in a list named elements and the links
to the child nodes are stored in a list named child, as shown in Figure 42.5.

Point
Key

M42_LIAN0182_11_SE_C42.indd 2 11/05/17 10:17 am

42.2 Designing Classes for 2–4 Trees 42-3

Figure 42.3 The animation tool enables you to insert, delete, and search elements in a 2–4 tree visually.

Figure 42.4 The Tree24 class implements Tree.

The root of the tree.

The size of the tree.

Creates a default 2-4 tree.

Creates a 2-4 tree from an array of objects.

Returns true if the element is in the tree.

Returns true if the element is added successfully.

Returns true if the element is removed from the tree
 successfully.
Returns true if element e is in the speci�ed node.

Returns the next child node to search for e.

Inserts element along with the reference to its right child
 to a 2- or 3-node.
Splits a 4-node u into u and v, inserts e to u or v, and
 returns the median element.
Locates the insertion point of the element in the node.

Deletes the speci�ed element from the node.

Performs a transfer and fusion operation if node u is
 empty.

Returns a search path that leads to element e.

1
Link

Tree<E>

Tree24<E>

-root: Tree24Node<E>

+size: int

+Tree24()

+Tree24(objects: E[])

+search(e: E): boolean

+insert(e: E): boolean

+delete(e: E): boolean

-matched(e: E, node: TreeNode<E>): boolean

-getChildNode(e: E, node: TreeNode<E>):
Tree24Node<E>

-insert23(e: E, rightChildOfe: Tree24Node<E>, node:
Tree24Node<E>): void

-split(e: E, rightChildOfe: Tree24Node<E>, u:
Tree24Node<E>, v: Tree24Node<E>): E

-locate(e: E, node: Tree24Node<E>): int

-delete(e: E, node: Tree24Node<E>): void

-validate(e: E, u: Tree24Node<E>, path:
ArrayList<Tree24Node<E>>): void

-path(e: E): ArrayList<E>

Tree24Node<E>

elements: ArrayList<E>
child: ArrayList<Tree24Node<E>>

+Tree24()
+Tree24(o: E)

An array list for storing the elements.

An array list for storing the links to the child nodes.

Creates an empty tree node.

Creates a tree node with an initial element.

m 0

M42_LIAN0182_11_SE_C42.indd 3 11/05/17 10:17 am

42-4 Chapter 42 2–4 Trees and B-Trees

 42.2.1 What is a 2–4 tree? What are a 2-node, 3-node, and 4-node?

 42.2.2 Describe the data fields in the Tree24 class and those in the Tree24Node class.

 42.2.3 What is the minimum number of elements in a 2–4 tree of height 5? What is the
maximum number of elements in a 2–4 tree of height 5?

42.3 Searching an Element
Searching an element in a 2–4 tree is similar to searching an element in a binary
tree. The difference is that you have to search an element within a node in addition to
searching elements along the path.

To search an element in a 2–4 tree, you start from the root and scan down. If an element is not
in the node, move to an appropriate subtree. Repeat the process until a match is found or you
arrive at an empty subtree. The algorithm is described in Listing 42.1.

Listing 42.1 Searching an Element in a 2–4 tree
 1 boolean search(E e) {
 2 current = root; // Start from the root
 3
 4 while (current != null) {
 5 if (match(e, current)) { // Element is in the node
 6 return true; // Element is found
 7 }
 8 else {
 9 current = getChildNode(e, current); // Search in a subtree
10 }
11 }
12 return false; // Element is not in the tree
13 }

The match(e, current) method checks whether element e is in the current node. The
getChildNode(e, current) method returns the root of the subtree for further search.
Initially, let current point to the root (line 2). Repeat searching the element in the current
node until current is null (line 4) or the element matches an element in the current node.

42.4 Inserting an Element into a 2–4 tree
Inserting an element involves locating a leaf node and inserting the element into the
leaf node.

To insert an element e to a 2–4 tree, locate a leaf node in which the element will be inserted.
If the leaf node is a 2-node or 3-node, simply insert the element into the node. If the node is
a 4-node, inserting a new element would cause an overflow. To resolve overflow, perform a
split operation as follows:

■■ Let u be the leaf 4-node in which the element will be inserted and parentOfu be the
parent of u, as shown in Figure 42.6(a).

Point
Check

Point
Key

Point
Key

Figure 42.5 A 2–4 tree node stores the elements and the links to the child nodes in array lists.

child.get(0) child.get(1) child.get(2) child.get(4)child.get(3)

elements.get(0) elements.get(1) elements.get(2) elements.get(3)

M42_LIAN0182_11_SE_C42.indd 4 11/05/17 10:17 am

42.4 Inserting an Element into a 2–4 tree 42-5

■■ Create a new node named v; move e2 to v.

■■ If e 6 e1 , insert e to u; otherwise insert e to v. Assume that e0 6 e 6 e1 , e is
inserted into u, as shown in Figure 42.6(b).

■■ Insert e1 along with its right child (i.e., v) to the parent node, as shown in Figure 42.6(b).

Figure 42.6 The splitting operation creates a new node and inserts the median element to
its parent.

parentOfu

u

p0 p1

e0 e1 e2

(a) Before inserting e (b) After inserting e

New child link

u v

p0 e1 p1

e0 e e2

Figure 42.7 Insertion process continues if the parent node is a 4-node.

parentOfu

(a) The parent is a 4-node

New child link

u v

p0 p1 p2

e0 e e2

e1

(b) Inserting e1 into the parent

parentOfu Right child
of e1

u ve0 e e2

e1

p0 p1 p2

The parent node is a 3-node in Figure 42.6. So, there is room to insert e to the parent node.
What happens if it is a 4-node, as shown in Figure 42.7? This requires that the parent node be
split. The process is the same as splitting a leaf 4-node, except that you must also insert the
element along with its right child.

The algorithm can be modified as follows:

■■ Let u be the 4-node (leaf or nonleaf) in which the element will be inserted and
parentOfu be the parent of u, as shown in Figure 42.8(a).

■■ Create a new node named v, move e2 and its children c2 and c3 to v.

■■ If e 6 e1 , insert e along with its right child link to u; otherwise insert e along
with its right child link to v, as shown in Figure 42.6(b), (c), (d) for the cases
e0 6 e 6 e1 , e1 6 e 6 e2 , and e2 6 e , respectively.

■■ Insert e1 along with its right child (i.e., v) to the parent node, recursively.

Listing 42.2 gives an algorithm for inserting an element.

Listing 42.2 Inserting an Element to a 2–4 tree
 1 public boolean insert(E e) {
 2 if (root == null)
 3 root = new Tree24Node<E>(e); // Create a new root for element
 4 else {
 5 Locate leafNode for inserting e
 6 insert(e, null, leafNode); // The right child of e is null
 7 }
 8
 9 size++; // Increase size
10 return true; // Element inserted
11 }
12

M42_LIAN0182_11_SE_C42.indd 5 11/05/17 10:17 am

42-6 Chapter 42 2–4 Trees and B-Trees

13 private void insert(E e, Tree24Node<E> rightChildOfe,
14 Tree24Node<E> u) {
15 if (u is a 2- or 3- node) { // u is a 2- or 3-node
16 insert23(e, rightChildOfe, u); // Insert e to node u
17 }
18 else { // Split a 4-node u
19 Tree24Node<E> v = new Tree24Node<E>(); // Create a new node
20 E median = split(e, rightChildOfe, u, v); // Split u
21
22 if (u == root) { // u is the root
23 root = new Tree24Node<E>(median); // New root
24 root.child.add(u); // u is the left child of median
25 root.child.add(v); // v is the right child of median
26 }
27 else {
28 Get the parent of u, parentOfu;
29 insert(median, v, parentOfu); // Inserting median to parent
30 }
31 }
32 }

The insert(E e, Tree24Node<E> rightChildOfe, Tree24Node<E> u) method
inserts element e along with its right child to node u. When inserting e to a leaf node, the right
child of e is null (line 6). If the node is a 2- or 3-node, simply insert the element to the node
(lines 15–17). If the node is a 4-node, invoke the split method to split the node (line 20).
The split method returns the median element. Recursively invoke the insert method to
insert the median element to the parent node (line 29). Figure 42.9 shows the steps of inserting
elements 34, 3, 50, 20, 15, 16, 25, 27, 29, and 24 into a 2–4 tree.

42.5 Deleting an Element from a 2–4 tree
Deleting an element involves locating the node that contains the element and remov-
ing the element from the node.

To delete an element from a 2–4 tree, first search the element in the tree to locate the node that
contains it. If the element is not in the tree, the method returns false. Let u be the node that
contains the element and parentOfu be the parent of u. Consider three cases:

Point
Key

Figure 42.8 An interior node may be split to resolve overflow.

parentOfu

u

c0 c1 c2
c3

p0 p1

e0 e1 e2

(a) Before inserting e (b) After inserting e (e0 < e < e1)

c0 c1 c2 c3

p0 e1 p1

e0 e e2

rightChildOfe

(c) After inserting e (e1 < e < e2)

c0 c1 c2

c3

p0 e1 p1

e0 e e2

rightChildOfe
(d) After inserting e (e2 < e)

c0 c1 c2 c3

p0 e1 p1

e0 e2 e

rightChildOfe

M42_LIAN0182_11_SE_C42.indd 6 11/05/17 10:17 am

42.5 Deleting an Element from a 2–4 tree 42-7

Case 1: u is a leaf 3-node or 4-node. Delete e from u.
Case 2: u is a leaf 2-node. Delete e from u. Now u is empty. This situation is known as

underflow. To remedy an underflow, consider two subcases:
Case 2.1: u’s immediate left or right sibling is a 3- or 4-node. Let the node be w, as shown in

Figure 42.10(a) (assume that w is a left sibling of u). Perform a transfer operation that moves
an element from parentOfu to u, as shown in Figure 42.10(b), and move an element from w to
replace the moved element in parentOfu, as shown in Figure 42.10(c).

Figure 42.9 The tree changes after 34, 3, 50, 20, 15, 16, 25, 27, 29, and 24 are added into an empty tree.

root in null 34 3 34 3 34 50

34

3 20 50 3 15 20 50

34

(a) (b) (c) (d) (e) (f)

(h)

15 34

3 5016 20 25

(g)

15 34

3 5016 20

(i)

15 20 34

3 5016 25 27

(j)

15 20 34

3 5016 25 27 29

(k)

15

20

3 16

27 34

502924 25

Figure 42.10 The transfer operation fills the empty node u.

(a) u is now empty (b) Move p1 to u (c) Move e1 to replace p1

parentOfu

w u

p0 p1 p2

e0 e1

parentOfu

w up1

p0 p2

e0 e1

parentOfu

w u

p0 e1 p2

e0 p1

Case 2.2: Both u’s immediate left and right siblings are 2-node if they exist (u may have
only one sibling). Let the node be w, as shown in Figure 42.11(a) (assume that w is a left sibling
of u). Perform a fusion operation that discards u and moves an element from parentOfu to w, as
shown in Figure 42.11(b). If parentOfu becomes empty, repeat Case 2 recursively to perform
a transfer or a fusion on parentOfu.

Figure 42.11 The fusion operation discards the empty node u.

(a) w is a 2-node (b) Move p1 to w

parentOfu

w u

p0 p1 p2

e0

parentOfu

w

p0 p2

e0 p1

M42_LIAN0182_11_SE_C42.indd 7 11/05/17 10:17 am

42-8 Chapter 42 2–4 Trees and B-Trees

Case 3: u is a nonleaf node. Find the rightmost leaf node in the left subtree of e. Let this
node be w, as shown in Figure 42.12(a). Move the last element in w to replace e in u, as shown
in Figure 42.12(b). If w becomes empty, apply a transfer or fusion operation on w.

Listing 42.3 describes the algorithm for deleting an element.

Figure 42.12 An element in the internal node is replaced by an element in a leaf node.

u

v0 v1w

root

….. …..…..

….. …..…..

e0 v1 e2u

v0w

root

….. …..…..

….. …..…..

e0 e e2

(a) e is in u (b) Replace e with v1

Listing 42.3 Deleting an Element from a 2–4 tree
 1 /** Delete the specified element from the tree */
 2 public boolean delete(E e) {
 3 Locate the node that contains the element e
 4 if (the node is found) {
 5 delete(e, node); // Delete element e from the node
 6 size−−; // After one element deleted
 7 return true; // Element deleted successfully
 8 }
 9
10 return false; // Element not in the tree
11 }
12
13 /** Delete the specified element from the node */
14 private void delete(E e, Tree24Node<E> node) {
15 if (e is in a leaf node) {
16 // Get the path that leads to e from the root
17 ArrayList<Tree24Node<E>> path = path(e);
18
19 Remove e from the node;
20
21 // Check node for underflow along the path and fix it
22 validate(e, node, path); // Check underflow node
23 }
24 else { // e is in an internal node
25 Locate the rightmost node in the left subtree of node u;
26 Get the rightmost element from the rightmost node;
27
28 // Get the path that leads to e from the root
29 ArrayList<Tree24Node<E>> path = path(rightmostElement);
30
31 Replace the element in the node with the rightmost element
32

M42_LIAN0182_11_SE_C42.indd 8 11/05/17 10:17 am

42.5 Deleting an Element from a 2–4 tree 42-9

33 // Check node for underflow along the path and fix it
34 validate(rightmostElement, rightmostNode, path);
35 }
36 }
37
38 /** Perform a transfer or fusion operation if necessary */
39 private void validate(E e, Tree24Node<E> u,
40 ArrayList<Tree24Node<E>> path) {
41 for (int i = path.size() − 1; i >= 0; i−−) {
42 if (u is not empty)
43 return; // Done, no need to perform transfer or fusion
44
45 Tree24Node<E> parentOfu = path.get(i − 1); // Get parent of u
46
47 // Check two siblings
48 if (left sibling of u has more than one element) {
49 Perform a transfer on u with its left sibling
50 }
51 else if (right sibling of u has more than one element) {
52 Perform a transfer on u with its right sibling
53 }
54 else if (u has left sibling) { // Fusion with a left sibling
55 Perform a fusion on u with its left sibling
56 u = parentOfu; // Back to the loop to check the parent node
57 }
58 else { // Fusion with right sibling (right sibling must exist)
59 Perform a fusion on u with its right sibling
60 u = parentOfu; // Back to the loop to check the parent node
61 }
62 }
63 }

The delete(E e) method locates the node that contains the element e and invokes the
delete(E e, Tree24Node<E> node) method (line 5) to delete the element from the node.

If the node is a leaf node, get the path that leads to e from the root (line 17), delete e from
the node (line 19), and invoke validate to check and fix the empty node (line 22). The
validate(E e, Tree24Node<E> u, ArrayList<Tree24Node<E>> path) method
performs a transfer or fusion operation if the node is empty. Since these operations may cause
the parent of node u to become empty, a path is obtained in order to obtain the parents along
the path from the root to node u, as shown in Figure 42.13.

If the node is a nonleaf node, locate the rightmost element in the left subtree of the node
(lines 25–26), get the path that leads to the rightmost element from the root (line 29), replace

Figure 42.13 The nodes along the path may become empty as result of a transfer and
fusion operation.

u

root

parentOfu

M42_LIAN0182_11_SE_C42.indd 9 11/05/17 10:17 am

42-10 Chapter 42 2–4 Trees and B-Trees

e in the node with the rightmost element (line 31), and invoke validate to fix the rightmost
node if it is empty (line 34).

The validate(E e, Tree24Node<E> u, ArrayList<Tree24Node<E>> path)
checks whether u is empty and performs a transfer or fusion operation to fix the empty node.
The validate method exits when node is not empty (line 43). Otherwise, consider one of
the following cases:

1. If u has a left sibling with more than one element, perform a transfer on u with its left
sibling (line 49).

2. Otherwise, if u has a right sibling with more than one element, perform a transfer on u
with its right sibling (line 52).

3. Otherwise, if u has a left sibling, perform a fusion on u with its left sibling (line 55) and
reset u to parentOfu (line 56).

4. Otherwise, u must have a right sibling. Perform a fusion on u with its right sibling
(line 59) and reset u to parentOfu (line 60).

Only one of the preceding cases is executed. Afterward, a new iteration starts to perform a
transfer or fusion operation on a new node u if needed. Figure 42.14 shows the steps of deleting
elements 20, 15, 3, 6, and 34 that are deleted from a 2–4 tree in Figure 42.9(k).

 42.5.1 How do you search an element in a 2–4 tree?

 42.5.2 How do you insert an element into a 2–4 tree?

 42.5.3 How do you delete an element from a 2–4 tree?

 42.5.4 Show the change of a 2–4 tree when inserting 1, 2, 3, 4, 10, 9, 7, 5, 8, and 6 into
it, in this order.

Point
Check

(a) Delete 20

15

20

3 16

27 34

502924 25

(b) Replace 20 with 16

15

3

16

27 34

502924 25

3 15

16

27 34

502924 25

(c) Perform a fusion

3 15

27

16 34

502924 25

(d) Perform a transfer

3
15

27

16 34

502924 25

(e) Delete 15
3

27

16 34

502924 25

(f) Delete 3

M42_LIAN0182_11_SE_C42.indd 10 11/05/17 10:17 am

42.7 Implementing the Tree24 Class 42-11

 42.5.5 For the tree built in the preceding question, show the change of the tree after delet-
ing 1, 2, 3, 4, 10, 9, 7, 5, 8, and 6 from it, in this order.

 42.5.6 Show the change of a B-tree of order 6 when inserting 1, 2, 3, 4, 10, 9, 7, 5, 8, 6,
17, 25, 18, 26, 14, 52, 63, 74, 80, 19, and 27 into it, in this order.

 42.5.7 For the tree built in the preceding question, show the change of the tree after delet-
ing 1, 2, 3, 4, 10, 9, 7, 5, and 8, and 6 from it, in this order.

42.6 Traversing Elements in a 2–4 tree
You can perform inorder, preorder, and postorder for traversing the elements in a 2–4 tree.

Inorder, preorder, and postorder traversals are useful for 2–4 trees. Inorder traversal visits the
elements in increasing order. Preorder traversal visits the elements in the root, then recursively
visits the subtrees from the left to right. Postorder traversal visits the subtrees from the left to
right recursively, and then the elements in the root.

For example, in the 2–4 tree in Figure 42.9(k), the inorder traversal is
3 15 16 20 24 25 27 29 34 50

The preorder traversal is
20 15 3 16 27 34 24 25 29 50

The postorder traversal is
3 16 1 24 25 29 50 27 34 20

42.7 Implementing the Tree24 Class
This section gives the complete implementation for the Tree24 class.

Listing 42.4 gives the complete source code for the Tree24 class.

Point
Key

Point
Key

Figure 42.14 The tree changes after 20, 15, 3, 6, and 34 are deleted from a 2–4 tree.

16

27

24 34

5029 25

(g) Perform a transfer

27

34

502924 25

(i) Perform a fusion

16

27

24 34

5029 25

(h) Delete 16

27 34

502924 25

(j) Perform a fusion

(k) Delete 34

27

502924 25

34

(l) Replace 34 with 16 (m) Perform a fusion

27 29

5024 25

27

24 25 29 50

M42_LIAN0182_11_SE_C42.indd 11 11/05/17 10:17 am

42-12 Chapter 42 2–4 Trees and B-Trees

Listing 42.4 Tree24.java
 1 import java.util.ArrayList;
 2
 3 public class Tree24<E extends Comparable<E>> implements Tree<E> {
 4 private Tree24Node<E> root;
 5 private int size;
 6
 7 /** Create a default 2–4 tree */
 8 public Tree24() {
 9 }
 10
 11 /** Create a 2–4 tree from an array of objects */
 12 public Tree24(E[] elements) {
 13 for (int i = 0; i < elements.length; i++)
 14 insert(elements[i]);
 15 }
 16
 17 @Override /* Search an element in the tree */
 18 public boolean search(E e) {
 19 Tree24Node<E> current = root; // Start from the root
 20
 21 while (current != null) {
 22 if (matched(e, current)) { // Element is in the node
 23 return true; // Element found
 24 }
 25 else {
 26 current = getChildNode(e, current); // Search in a subtree
 27 }
 28 }
 29
 30 return false; // Element is not in the tree
 31 }
 32
 33 /** Return true if the element is found in this node */
 34 private boolean matched(E e, Tree24Node<E> node) {
 35 for (int i = 0; i < node.elements.size(); i++)
 36 if (node.elements.get(i).equals(e))
 37 return true; // Element found
 38
 39 return false; // No match in this node
 40 }
 41
 42 /** Locate a child node to search element e */
 43 private Tree24Node<E> getChildNode(E e, Tree24Node<E> node) {
 44 if (node.child.size() == 0)
 45 return null; // node is a leaf
 46
 47 int i = locate(e, node); // Locate the insertion point for e
 48 return node.child.get(i); // Return the child node
 49 }
 50
 51 @Override /** Insert element e into the tree
 52 * Return true if the element is inserted successfully
 53 */
 54 public boolean insert(E e) {
 55 if (root == null)
 56 root = new Tree24Node<E>(e); // Create a new root for element
 57 else {
 58 // Locate the leaf node for inserting e
 59 Tree24Node<E> leafNode = null;

M42_LIAN0182_11_SE_C42.indd 12 11/05/17 10:17 am

42.7 Implementing the Tree24 Class 42-13

 60 Tree24Node<E> current = root;
 61 while (current != null)
 62 if (matched(e, current)) {
 63 return false; // Duplicate element found, nothing inserted
 64 }
 65 else {
 66 leafNode = current;
 67 current = getChildNode(e, current);
 68 }
 69
 70 // Insert the element e into the leaf node
 71 insert(e, null, leafNode); // The right child of e is null
 72 }
 73
 74 size++; // Increase size
 75 return true; // Element inserted
 76 }
 77
 78 /** Insert element e into node u */
 79 private void insert(E e, Tree24Node<E> rightChildOfe,
 80 Tree24Node<E> u) {
 81 // Get the search path that leads to element e
 82 ArrayList<Tree24Node<E>> path = path(e);
 83
 84 for (int i = path.size() − 1; i >= 0; i−−) {
 85 if (u.elements.size() < 3) { // u is a 2-node or 3-node
 86 insert23(e, rightChildOfe, u); // Insert e to node u
 87 break; // No further insertion to u's parent needed
 88 }
 89 else {
 90 Tree24Node<E> v = new Tree24Node<E>(); // Create a new node
 91 E median = split(e, rightChildOfe, u, v); // Split u
 92
 93 if (u == root) {
 94 root = new Tree24Node<E>(median); // New root
 95 root.child.add(u); // u is the left child of median
 96 root.child.add(v); // v is the right child of median
 97 break; // No further insertion to u's parent needed
 98 }
 99 else {
100 // Use new values for the next iteration in the for loop
101 e = median; // Element to be inserted to parent
102 rightChildOfe = v; // Right child of the element
103 u = path.get(i − 1); // New node to insert element
104 }
105 }
106 }
107 }
108
109 /** Insert element to a 2- or 3- and return the insertion point */
110 private void insert23(E e, Tree24Node<E> rightChildOfe,
111 Tree24Node<E> node) {
112 int i = this.locate(e, node); // Locate where to insert
113 node.elements.add(i, e); // Insert the element into the node
114 if (rightChildOfe != null)
115 node.child.add(i + 1, rightChildOfe); // Insert the child link
116 }
117
118 /** Split a 4-node u into u and v and insert e to u or v */
119 private E split(E e, Tree24Node<E> rightChildOfe,

M42_LIAN0182_11_SE_C42.indd 13 11/05/17 10:17 am

42-14 Chapter 42 2–4 Trees and B-Trees

120 Tree24Node<E> u, Tree24Node<E> v) {
121 // Move the last element in node u to node v
122 v.elements.add(u.elements.remove(2));
123 E median = u.elements.remove(1);
124
125 // Split children for a nonleaf node
126 // Move the last two children in node u to node v
127 if (u.child.size() = 0) {
128 v.child.add(u.child.remove(2));
129 v.child.add(u.child.remove(2));
130 }
131
132 // Insert e into a 2- or 3- node u or v.
133 if (e.compareTo(median) < 0)
134 insert23(e, rightChildOfe, u);
135 else
136 insert23(e, rightChildOfe, v);
137
138 return median; // Return the median element
139 }
140
141 /** Return a search path that leads to element e */
142 private ArrayList<Tree24Node<E>= path(E e) {
143 ArrayList<Tree24Node<E>= list = new ArrayList<Tree24Node<E>=();
144 Tree24Node<E> current = root; // Start from the root
145
146 while (current != null) {
147 list.add(current); // Add the node to the list
148 if (matched(e, current)) {
149 break; // Element found
150 }
151 else {
152 current = getChildNode(e, current);
153 }
154 }
155
156 return list; // Return an array of nodes
157 }
158
159 @Override /** Delete the specified element from the tree */
160 public boolean delete(E e) {
161 // Locate the node that contains the element e
162 Tree24Node<E> node = root;
163 while (node != null)
164 if (matched(e, node)) {
165 delete(e, node); // Delete element e from node
166 size−−; // After one element deleted
167 return true; // Element deleted successfully
168 }
169 else {
170 node = getChildNode(e, node);
171 }
172
173 return false; // Element not in the tree
174 }
175
176 /** Delete the specified element from the node */
177 private void delete(E e, Tree24Node<E> node) {
178 if (node.child.size() == 0) { // e is in a leaf node
179 // Get the path that leads to e from the root
180 ArrayList<Tree24Node<E>> path = path(e);

M42_LIAN0182_11_SE_C42.indd 14 11/05/17 10:17 am

42.7 Implementing the Tree24 Class 42-15

181
182 node.elements.remove(e); // Remove element e
183
184 if (node == root) { // Special case
185 if (node.elements.size() == 0)
186 root = null; // Empty tree
187 return; // Done
188 }
189
190 validate(e, node, path); // Check underflow node
191 }
192 else { // e is in an internal node
193 // Locate the rightmost node in the left subtree of the node
194 int index = locate(e, node); // Index of e in node
195 Tree24Node<E> current = node.child.get(index);
196 while (current.child.size() > 0) {
197 current = current.child.get(current.child.size() − 1);
198 }
199 E rightmostElement =
200 current.elements.get(current.elements.size() − 1);
201
202 // Get the path that leads to e from the root
203 ArrayList<Tree24Node<E>= path = path(rightmostElement);
204
205 // Replace the deleted element with the rightmost element
206 node.elements.set(index, current.elements.remove(
207 current.elements.size() − 1));
208
209 validate(rightmostElement, current, path); // Check underflow
210 }
211 }
212
213 /** Perform transfer and confusion operations if necessary */
214 private void validate(E e, Tree24Node<E> u,
215 ArrayList<Tree24Node<E>> path) {
216 for (int i = path.size() − 1; u.elements.size() == 0; i−−) {
217 Tree24Node<E> parentOfu = path.get(i − 1); // Get parent of u
218 int k = locate(e, parentOfu); // Index of e in the parent node
219
220 // Check two siblings
221 if (k > 0 && parentOfu.child.get(k − 1).elements.size() > 1) {
222 leftSiblingTransfer(k, u, parentOfu);
223 }
224 else if (k + 1 < parentOfu.child.size() &&
225 parentOfu.child.get(k + 1).elements.size() > 1) {
226 rightSiblingTransfer(k, u, parentOfu);
227 }
228 else if (k − 1 == 0) { // Fusion with a left sibling
229 // Get left sibling of node u
230 Tree24Node<E> leftNode = parentOfu.child.get(k − 1);
231
232 // Perform a fusion with left sibling on node u
233 leftSiblingFusion(k, leftNode, u, parentOfu);
234
235 // Done when root becomes empty
236 if (parentOfu == root && parentOfu.elements.size() == 0) {
237 root = leftNode;
238 break;
239 }
240
241 u = parentOfu; // Back to the loop to check the parent node

M42_LIAN0182_11_SE_C42.indd 15 11/05/17 10:17 am

42-16 Chapter 42 2–4 Trees and B-Trees

242 }
243 else { // Fusion with right sibling (right sibling must exist)
244 // Get left sibling of node u
245 Tree24Node<E> rightNode = parentOfu.child.get(k + 1);
246
247 // Perform a fusion with right sibling on node u
248 rightSiblingFusion(k, rightNode, u, parentOfu);
249
250 // Done when root becomes empty
251 if (parentOfu == root && parentOfu.elements.size() == 0) {
252 root = rightNode;
253 break;
254 }
255
256 u = parentOfu; // Back to the loop to check the parent node
257 }
258 }
259 }
260
261 /** Locate the insertion point of the element in the node */
262 private int locate(E o, Tree24Node<E> node) {
263 for (int i = 0; i < node.elements.size(); i++) {
264 if (o.compareTo(node.elements.get(i)) <= 0) {
265 return i;
266 }
267 }
268
269 return node.elements.size();
270 }
271
272 /** Perform a transfer with a left sibling */
273 private void leftSiblingTransfer(int k,
274 Tree24Node<E> u, Tree24Node<E> parentOfu) {
275 // Move an element from the parent to u
276 u.elements.add(0, parentOfu.elements.get(k − 1));
277
278 // Move an element from the left node to the parent
279 Tree24Node<E> leftNode = parentOfu.child.get(k − 1);
280 parentOfu.elements.set(k − 1,
281 leftNode.elements.remove(leftNode.elements.size() − 1));
282
283 // Move the child link from left sibling to the node
284 if (leftNode.child.size() > 0)
285 u.child.add(0, leftNode.child.remove(
286 leftNode.child.size() − 1));
287 }
288
289 /** Perform a transfer with a right sibling */
290 private void rightSiblingTransfer(int k,
291 Tree24Node<E> u, Tree24Node<E> parentOfu) {
292 // Transfer an element from the parent to u
293 u.elements.add(parentOfu.elements.get(k));
294
295 // Transfer an element from the right node to the parent
296 Tree24Node<E> rightNode = parentOfu.child.get(k + 1);
297 parentOfu.elements.set(k, rightNode.elements.remove(0));
298
299 // Move the child link from right sibling to the node
300 if (rightNode.child.size() > 0)
301 u.child.add(rightNode.child.remove(0));
302 }

M42_LIAN0182_11_SE_C42.indd 16 11/05/17 10:17 am

42.7 Implementing the Tree24 Class 42-17

303
304 /** Perform a fusion with a left sibling */
305 private void leftSiblingFusion(int k, Tree24Node<E> leftNode,
306 Tree24Node<E> u, Tree24Node<E> parentOfu) {
307 // Transfer an element from the parent to the left sibling
308 leftNode.elements.add(parentOfu.elements.remove(k − 1));
309
310 // Remove the link to the empty node
311 parentOfu.child.remove(k);
312
313 // Adjust child links for nonleaf node
314 if (u.child.size() > 0)
315 leftNode.child.add(u.child.remove(0));
316 }
317
318 /** Perform a fusion with a right sibling */
319 private void rightSiblingFusion(int k, Tree24Node<E> rightNode,
320 Tree24Node<E> u, Tree24Node<E> parentOfu) {
321 // Transfer an element from the parent to the right sibling
322 rightNode.elements.add(0, parentOfu.elements.remove(k));
323
324 // Remove the link to the empty node
325 parentOfu.child.remove(k);
326
327 // Adjust child links for nonleaf node
328 if (u.child.size() > 0)
329 rightNode.child.add(0, u.child.remove(0));
330 }
331
332 /** Get the number of nodes in the tree */
333 public int getSize() {
334 return size;
335 }
336
337 /** Preorder traversal from the root */
338 public void preorder() {
339 preorder(root);
340 }
341
342 /** Preorder traversal from a subtree */
343 private void preorder(Tree24Node<E> root) {
344 if (root == null)return;
345 for (int i = 0; i < root.elements.size(); i++)
346 System.out.print(root.elements.get(i) + " ");
347
348 for (int i = 0; i < root.child.size(); i++)
349 preorder(root.child.get(i));
350 }
351
352 /** Inorder traversal from the root*/
353 public void inorder() {
354 // Left as exercise
355 }
356
357 /** Postorder traversal from the root */
358 public void postorder() {
359 // Left as exercise
360 }
361
362 /** Return true if the tree is empty */
363 public boolean isEmpty() {

M42_LIAN0182_11_SE_C42.indd 17 11/05/17 10:17 am

42-18 Chapter 42 2–4 Trees and B-Trees

364 return root == null;
365 }
366
367 @Override /** Remove all elements from the tree */
368 public void clear() {
369 root = null;
370 size = 0;
371 }
372
373 /** Return an iterator to traverse elements in the tree */
374 public java.util.Iterator iterator() {
375 // Left as exercise
376 return null;
377 }
378
379 /** Define a 2–4 tree node */
380 protected static class Tree24Node<E extends Comparable<E>> {
381 // elements has maximum three values
382 ArrayList<E> elements = new ArrayList<E>(3);
383 // Each has maximum four childres
384 ArrayList<Tree24Node<E>> child
385 = new ArrayList<Tree24Node<E>>(4);
386
387 /** Create an empty Tree24 node */
388 Tree24Node() {
389 }
390
391 /** Create a Tree24 node with an initial element */
392 Tree24Node(E o) {
393 elements.add(o);
394 }
395 }
396 }

The Tree24 class contains the data fields root and size (lines 4–5). root references the root
node and size stores the number of elements in the tree.

The Tree24 class has two constructors: a no-arg constructor (lines 8–9) that constructs
an empty tree and a constructor that creates an initial Tree24 from an array of elements
(lines 12–15).

The search method (lines 18–31) searches an element in the tree. It returns true (line 23)
if the element is in the tree and returns false if the search arrives at an empty subtree (line 30).

The matched(e, node) method (lines 34–40) checks where the element e is in the node.
The getChildNode(e, node) method (lines 43–49) returns the root of a subtree where

e should be searched.
The insert(E e) method inserts an element in a tree (lines 54–76). If the tree is empty,

a new root is created (line 56). The method locates a leaf node in which the element will be
inserted and invokes insert(e, null, leafNode) to insert the element (line 71).

The insert(e, rightChildOfe, u) method inserts an element into node u (lines
79–107). The method first invokes path(e) (line 82) to obtain a search path from the root to
node u. Each iteration of the for loop considers u and its parent parentOfu (lines 84–106).
If u is a 2-node or 3-node, invoke insert23(e, rightChildOfe, u) to insert e and its
child link rightChildOfe into u (line 86). No split is needed (line 87). Otherwise, create a
new node v (line 90) and invoke split(e, rightChildOfe, u, v) (line 91) to split u
into u and v. The split method inserts e into either u and v and returns the median in the
original u. If u is the root, create a new root to hold median, and set u and v as the left and
right children for median (lines 95–96). If u is not the root, insert median to parentOfu in
the next iteration (lines 101–103).

M42_LIAN0182_11_SE_C42.indd 18 11/05/17 10:17 am

42.8 Testing the Tree24 Class 42-19

The insert23(e, rightChildOfe, node) method inserts e along with the reference
to its right child into the node (lines 110–116). The method first invokes locate(e, node)
(line 112) to locate an insertion point, then insert e into the node (line 113). If rightChildOfe
is not null, it is inserted into the child list of the node (line 115).

The split(e, rightChildOfe, u, v) method splits a 4-node u (lines 119-139). This is
accomplished as follows: (1) move the last element from u to v and remove the median element
from u (lines 122–123); (2) move the last two child links from u to v (lines 127–130) if u is a
nonleaf node; (3) if e < median, insert e into u; otherwise, insert e into v (lines 133–136);
and (4) return median (line 138).

The path(e) method returns an ArrayList of nodes searched from the root in order to
locate e (lines 142–157). If e is in the tree, the last node in the path contains e. Otherwise, the
last node is where e should be inserted.

The delete(E e) method deletes an element from the tree (lines 160–174). The method
first locates the node that contains e and invokes delete(e, node) to delete e from the node
(line 165). If the element is not in the tree, return false (line 173).

The delete(e, node) method deletes an element from node u (lines 177–211). If the
node is a leaf node, obtain the path that leads to e (line 180), delete e (line 182), set root to
null if the tree becomes empty (lines 184–188), and invoke validate to apply transfer and
fusion operation on empty nodes (line 190). If the node is a nonleaf node, locate the rightmost
element (lines 194–200), obtain the path that leads to e (line 203), replace e with the rightmost
element (lines 206–207), and invoke validate to apply transfer and fusion operations on
empty nodes (line 209).

The validate(e, u, path) method ensures that the tree is a valid 2–4 tree (lines
214–259). The for loop terminates when u is not empty (line 216). The loop body is executed
to fix the empty node u by performing a transfer or fusion operation. If a left sibling with more
than one element exists, perform a transfer on u with the left sibling (line 222). Otherwise, if
a right sibling with more than one element exists, perform a transfer on u with the left sibling
(line 226). Otherwise, if a left sibling exists, perform a fusion on u with the left sibling (lines
230–239), and validate parentOfu in the next loop iteration (line 241). Otherwise, perform
a fusion on u with the right sibling.

The locate(e, node) method locates the index of e in the node (lines 262–270).
The leftSiblingTransfer(k, u, parentOfu) method performs a transfer on u with

its left sibling (lines 273–287). The rightSiblingTransfer(k, u, parentOfu) method
performs a transfer on u with its right sibling (lines 290–302). The leftSiblingFusion(k,
leftNode, u, parentOfu) method performs a fusion on u with its left sibling leftNode
(lines 305–316). The rightSiblingFusion(k, rightNode, u, parentOfu) method
performs a fusion on u with its right sibling rightNode (lines 319–330).

The preorder() method displays all the elements in the tree in preorder (lines 338–350).
The inner class Tree24Node defines a class for a node in the tree (lines 374–389).

42.8 Testing the Tree24 Class
This section writes a test program for using the Tree24 class.

Listing 42.5 gives a test program. The program creates a 2–4 tree and inserts elements in
lines 6–20, and deletes elements in lines 22–56.

Listing 42.5 TestTree24.java
 1 public class TestTree24 {
 2 public static void main(String[] args) {
 3 // Create a 2–4 tree
 4 Tree24<Integer> tree = new Tree24<Integer>();
 5

Point
Key

M42_LIAN0182_11_SE_C42.indd 19 11/05/17 10:17 am

42-20 Chapter 42 2–4 Trees and B-Trees

 6 tree.insert(34);
 7 tree.insert(3);
 8 tree.insert(50);
 9 tree.insert(20);
10 tree.insert(15);
11 tree.insert(16);
12 tree.insert(25);
13 tree.insert(27);
14 tree.insert(29);
15 tree.insert(24);
16 System.out.print("\nAfter inserting 24:");
17 printTree(tree);
18 tree.insert(23);
19 tree.insert(22);
20 tree.insert(60);
21 tree.insert(70);
22 System.out.print("\nAfter inserting 70:");
23 printTree(tree);
24
25 tree.delete(34);
26 System.out.print("\nAfter deleting 34:");
27 printTree(tree);
28
29 tree.delete(25);
30 System.out.print("\nAfter deleting 25:");
31 printTree(tree);
32
33 tree.delete(50);
34 System.out.print("\nAfter deleting 50:");
35 printTree(tree);
36
37 tree.delete(16);
38 System.out.print("\nAfter deleting 16:");
39 printTree(tree);
40
41 tree.delete(3);
42 System.out.print("\nAfter deleting 3:");
43 printTree(tree);
44
45 tree.delete(15);
46 System.out.print("\nAfter deleting 15:");
47 printTree(tree);
48 }
49
50 public static <E extends Comparable<E>>
51 void printTree(Tree<E> tree) {
52 // Traverse tree
53 System.out.print("\nPreorder: ");
54 tree.preorder();
55 System.out.print("\nThe number of nodes is " + tree.getSize());
56 System.out.println();
57 }
58 }

After inserting 24:

Preorder: 20 15 3 16 27 34 24 25 29 50
The number of nodes is 10

M42_LIAN0182_11_SE_C42.indd 20 11/05/17 10:17 am

42.10 B-Tree 42-21

After inserting 70:
Preorder: 20 15 3 16 24 27 34 22 23 25 29 50 60 70
The number of nodes is 14

After deleting 34:
Preorder: 20 15 3 16 24 27 50 22 23 25 29 60 70
The number of nodes is 13

After deleting 25:
Preorder: 20 15 3 16 23 27 50 22 24 29 60 70
The number of nodes is 12

After deleting 50:
Preorder: 20 15 3 16 23 27 60 22 24 29 70
The number of nodes is 11

After deleting 16:
Preorder: 23 20 3 15 22 27 60 24 29 70
The number of nodes is 10

After deleting 3:
Preorder: 23 20 15 22 27 60 24 29 70
The number of nodes is 9

After deleting 15:
Preorder: 27 23 20 22 24 60 29 70
The number of nodes is 8

Figure 42.15 shows how the tree evolves as elements are added. After 34, 3, 50, 20, 15, 16,
25, 27, 29, and 24 are added to the tree, it is as shown in Figure 42.15(a). After inserting 23,
22, 60, and 70, the tree is as shown in Figure 42.15(b). After deleting 34, the tree is as shown
in Figure 42.15(c). After deleting 25, the tree is as shown in Figure 42.15(d). After deleting
50, the tree is as shown in Figure 42.15(e). After deleting 16, the tree is as shown in Figure
42.15(f). After deleting 3, the tree is as shown in Figure 42.15(g). After deleting 15, the tree
is as shown in Figure 42.15(h).

42.9 Time-Complexity Analysis
Search, insertion, and deletion operations take O(logn) time in a 2–4 tree.

Since a 2–4 tree is a completely balanced binary tree, its height is at most O(log n). The
search, insert, and delete methods operate on the nodes along a path in the tree. It takes a
constant time to search an element within a node. So, the search method takes O(log n) time.
For the insert method, the time for splitting a node takes a constant time. So, the insert
method takes O(log n) time. For the delete method, it takes a constant time to perform a
transfer and fusion operation. So, the delete method takes O(log n) time.

42.10 B-Tree
A B-tree is a generalization of a 2–4 tree.

So far we assume that the entire data set is stored in main memory. What if the data set is
too large and cannot fit in the main memory, as in the case with most databases, where data
is stored on disks? Suppose you use an AVL tree to organize a million records in a database
table. To find a record, the average number of nodes traversed is log 2 1 ,0 0 0 ,0 0 0 ≈ 2 0 .

Point
Key

Point
Key

M42_LIAN0182_11_SE_C42.indd 21 11/05/17 10:17 am

42-22 Chapter 42 2–4 Trees and B-Trees

(a) After inserting 34, 3, 50, 20, 15, 16, 25, 27, 29, and 24, in this order

3

15

16 24 25

27 34

50

20

29

(b) After inserting 23, 22, 60, and 70

3

15

16 22 23

24 27 34

50 60 70

20

25 29

(c) After deleting 34

3

15

16 22 23

24 27 50

60 70

20

25 29

(d) After deleting 25

3

15

16 22

23 27 50

60 70

20

24 29

(e) After deleting 50

3

15

16 22

23 27 60

70

20

24 29

This is fine if all nodes are stored in main memory. However, for nodes stored on a disk, this
means 20 disk reads. Disk I/O is expensive, and it is thousands of times slower than memory
access. To improve performance, we need to reduce the number of disk I/Os. An efficient data
structure for performing search, insertion, and deletion for data stored on secondary storage
such as hard disks is the B-tree, which is a generalization of the 2–4 tree.

M42_LIAN0182_11_SE_C42.indd 22 11/05/17 10:17 am

42.10 B-Tree 42-23

Figure 42.16 In a B-tree of order 6, each node except the root may contain between 2 and 5 keys.

3 6

8 13

9 10 15 16

18 43

20 26 27 31 32 35 36 37 45 46 47 49 50 75 76 77 78 79

28 33 48 53 65

59 60

Figure 42.15 The tree evolves as elements are inserted and deleted.

(f) After deleting 16

3 15

20

22

27 60

70

23

24 29

(g) After deleting 3

15

20

22

27 60

70

23

24 29

(h) After deleting 15

20 22

23

24

60

70

27

29

A B-tree of order d is defined as follows:

1. Each node except the root contains between <d/2= - 1 and d - 1 keys.

2. The root may contain up to d - 1 keys.

3. A nonleaf node with k keys has k + 1 children.

4. All leaf nodes have the same depth.

Figure 42.16 shows a B-tree of order 6. For simplicity, we use integers to represent keys.
Each key is associated with a pointer that points to the actual record in the database. For sim-
plicity, the pointers to the records in the database are omitted in the figure.

M42_LIAN0182_11_SE_C42.indd 23 11/05/17 10:17 am

42-24 Chapter 42 2–4 Trees and B-Trees

The basic unit of the IO operations on a disk is a block. When you read data from a disk, the
whole block that contains the data is read. You should choose an appropriate order d so that a
node can fit in a single disk block. This will minimize the number of disk IOs.

A 2–4 tree is actually a B-tree of order 4. The techniques for insertion and deletion in a 2–4
tree can be easily generalized for a B-tree.

Inserting a key to a B-tree is similar to what was done for a 2–4 tree. First locate the leaf
node in which the key will be inserted. Insert the key to the node. After the insertion, if the leaf
node has d keys, an overflow occurs. To resolve overflow, perform a split operation similar to
the one used in a 2–4 tree, as follows:

Let u denote the node needed to be split and let m denote the median key in the node.
Create a new node and move all keys greater than m to this new node. Insert m to the parent
node of u. Now u becomes the left child of m and v becomes the right child of m, as shown in
Figure 42.18. If inserting m into the parent node of u causes an overflow, repeat the same split
process on the parent node.

Figure 42.18 (a) After inserting a new key to node u. (b) The median key k p is inserted to
parentOfu.

k1 k2 … kd

parentOfu

u

…

k1 … kp–1

parentOfu

u

… kp …

kp+1 …kd new node

Figure 42.19 The transfer operation transfers a key from the parentOfu to u and transfers a key from u ’s sibling
parentOfu.

… j

... i …

w u

parentOfu

… k … j

.. . …

w u

parentOfu

i … k …

... j…

w u

parentOfu

i … k

(a) Before a transfer is performed (b) Key i moved to node u (c) Key j moved to parentOfu

Figure 42.17 The keys in the left (right) subtree of key k i are less than (greater than) k i.

k1 k2 … ki …

left subtree right subtree

Note that a B-tree is a search tree. The keys in each node are placed in increasing order.
Each key in an interior node has a left subtree and a right subtree, as shown in Figure 42.17.
All keys in the left subtree are less than the key in the parent node, and all keys in the right
subtree are greater than the key in the parent node.

A key k can be deleted from a B-tree in the same way as in a 2–4 tree. First locate the node
u that contains the key. Consider two cases:

Case 1: If u is a leaf node, remove the key from u. After the removal, if u has less than
<d/2= - 1 keys, an underflow occurs. To remedy an underflow, perform a transfer with a sibling

M42_LIAN0182_11_SE_C42.indd 24 11/05/17 10:17 am

42.10 B-Tree 42-25

Case 2: u is a nonleaf node. Find the rightmost leaf node in the left subtree of k. Let this
node be w, as shown in Figure 42.21(a). Move the last key in w to replace k in u, as shown in
Figure 42.21(b). If w becomes underflow, apply a transfer or fusion operation on w.

Figure 42.20 The fusion operation moves key i from the parentOfu u to w and moves all
keys in u to w.

… j

 ... i …

w u

parentOfu

… k … j i … k

.. . …

w

parentOfu

(a) Before a fusion is performed (b) After a fusion is performed

Figure 42.21 A key in the internal node is replaced by an element in a leaf node.

u

… iw

root

….. …..…..

….. …..…..

 … i …u

…w

root

….. …..…..

….. …..…..

(a) Key is in u (b) Replace key k with key i

 … k …

The performance of a B-tree depends on the number of disk IOs (i.e., the number of
nodes accessed). The number of nodes accessed for search, insertion, and deletion opera-
tions depends on the height of the tree. In the worst case, each node contains <d/2= -1 keys.
So, the height of the tree is log < d / 2 = n , where n is the number of keys. In the best case,
each node contains d - 1 keys. So, the height of the tree is log d n . Consider a B-tree of
order 12 for 10 million keys. The height of the tree is between log6 10,000,000 ≈ 7 and
log 1 2 1 0 ,0 0 0 ,0 0 0 ≈ 9 . So, for search, insertion, and deletion operations, the maximum
number of nodes visited is 42. If you use an AVL tree, the maximum number of nodes visited
is log 2 1 0 ,0 0 0 ,0 0 0 ≈ 2 4 .

Key Terms

2–3–4 tree 42-2
2–4 tree 42-2
2-node 42-2
3-node 42-2
4-node 42-2

B-tree 42-11
fusion operation 42-7
split operation 42-4
transfer operation 42-7

w of u that has more than <d/2= - 1 keys if such sibling exists, as shown in Figure 42.19.
Otherwise, perform a fusion with a sibling w of u, as shown in Figure 42.20.

M42_LIAN0182_11_SE_C42.indd 25 11/05/17 10:17 am

42-26 Chapter 42 2–4 Trees and B-Trees

ChapTer summary

1. A 2–4 tree is a completely balanced search tree. In a 2–4 tree, a node may have one,
two, or three elements.

2. Searching an element in a 2–4 tree is similar to searching an element in a binary tree.
The difference is that you have searched an element within a node.

3. To insert an element to a 2–4 tree, locate a leaf node in which the element will be
inserted. If the leaf node is a 2- or 3-node, simply insert the element into the node. If the
node is a 4-node, split the node.

4. The process of deleting an element from a 2–4 tree is similar to that of deleting an ele-
ment from a binary tree. The difference is that you have to perform transfer or fusion
operations for empty nodes.

5. The height of a 2–4 tree is O (logn). So, the time complexities for the search, insert, and
delete methods are O (logn).

6. A B-tree is a generalization of the 2–4 tree. Each node in a B-tree of order d can have
between <d/2= -1 and d - 1 keys except the root. 2–4 trees are flatter than AVL trees
and B-trees are flatter than 2–4 trees. B-trees are efficient for creating indexes for data
in database systems where large amounts of data are stored on disks.

Quiz

Answer the quiz for this chapter online at the book Companion Website.

programming exerCises

 *42.1 (Implement inorder) The inorder method in Tree24 is left as an exercise.
Implement it.

 42.2 (Implement postorder) The postorder method in Tree24 is left as an exercise.
Implement it.

 42.3 (Implement iterator) The iterator method in Tree24 is left as an exercise.
Implement it to iterate the elements using inorder.

 *42.4 (Display a 2–4 tree graphically) Write a GUI program that displays a 2–4 tree.

 ***42.5 (2–4 tree animation) Write a GUI program that animates the 2–4 tree insert,
delete, and search methods, as shown in Figure 42.4.

 **42.6 (Parent reference for Tree24) Redefine Tree24Node to add a reference to a node’s
parent, as shown below:

Tree24Node<E>

elements: ArrayList<E>

child: ArrayList<Tree24Node<E>>

parent: Tree24Node<E>

An array list for storing the elements.

An array list for storing the links to the child nodes.

Refers to the parent of this node.

+Tree24()

+Tree24(o: E)

Creates an empty tree node.

Creates a tree node with an initial element.

M42_LIAN0182_11_SE_C42.indd 26 11/05/17 10:17 am

Programming Exercises 42-27

 Add the following two new methods in Tree24:

public Tree24Node<E> getParent(Tree24Node<E> node)
 Returns the parent for the specified node.
public ArrayList<Tree24Node<E>> getPath(Tree24Node<E> node)
 Returns the path from the specified node to the root in an
array list.

 Write a test program that adds numbers 1, 2, ..., 100 to the tree and displays the
paths for all leaf nodes.

 ***42.7 (The BTree class) Design and implement a class for B-trees.

M42_LIAN0182_11_SE_C42.indd 27 11/05/17 10:17 am

M42_LIAN0182_11_SE_C42.indd 28 11/05/17 10:17 am

