

© Copyright Y. Daniel Liang 1

NetBeans Tutorial

For Introduction to Java Programming
By Y. Daniel Liang

This tutorial applies to NetBeans 6, 7, or a higher version.

This supplement covers the following topics:

 Getting Started with NetBeans (§1)
 Creating a Project (§2)
 Creating a Class (§3)
 Compiling a Class (§4)
 Running a Java Application (§5)
 Running Book Examples (§6)
 Getting Help in NetBeans (§7)
 Forcing a Program to Terminate (§8)
 Using Packages (§9)
 Run Java Applications from the Command Line (§10)
 Debugging in NetBeans (§11)

NOTE: To use this supplement with the text, you
may cover Sections 1 – 9 in this supplement
after Chapter 1 in the text, cover Sections 10-
11 in this supplement after Chapter 2 in the
text, and cover Section 12 along with Chapter
17.

0 Introduction

This tutorial is for students who are currently taking a
Java course using NetBeans with Introduction to Java
Programming.

You can use the JDK command line utility to write Java
programs. The JDK command line utility consists of a set of
separate programs, such as compiler and interpreter, each of
which is invoked from a command line. Besides the JDK
command line utility, there are more than a dozen Java
development tools on the market today, including NetBeans,
JBuilder, and Eclipse. These tools support an integrated
development environment (IDE) for rapidly developing Java
programs. Editing, compiling, building, debugging, and
online help are integrated in one graphical user interface.
Using these tools effectively will greatly increase your
programming productivity.

© Copyright Y. Daniel Liang 2

This brief tutorial will help you to become familiar
with NetBeans. Specifically, you will learn how to
create projects, create programs, compile, run, and
debug programs.

NOTE: NetBeans can run on any platform with a
Java Virtual Machine. The screen shots in the
tutorial are taken from Windows using NetBeans
6.1. It works same for a higher version of
NetBeans.

1 Getting Started with NetBeans

Assume that you have successfully installed NetBeans on your
machine. Start NetBeans from Windows, Linux, Mac OS X, or
Solaris. The NetBeans main window appears, as shown in
Figure 1.

Figure 1

The NetBeans main window is the command center for the IDE.

The NetBeans main window contains menus, toolbars, project
pane, files pane, runtime pane, navigator pane, and other
panes.

1.1 The Main Menu

The main menu is similar to that of other Windows
applications and provides most of the commands you need to
use NetBeans, including those for creating, editing,
compiling, running, and debugging programs. The menu items
are enabled and disabled in response to the current context.

1.2 The Toolbar

The toolbar provides buttons for several frequently used
commands on the menu bar. The toolbars are enabled and
disabled in response to the current context. Clicking a
toolbar is faster than using the menu bar. For many

© Copyright Y. Daniel Liang 3

commands, you also can use function keys or keyboard
shortcuts. For example, you can save a file in three ways:

 Select File, Save from the menu bar.

 Click the "save" toolbar button ().

 Use the keyboard shortcut Ctrl+S.

TIP: You can display a label known as ToolTip
for a toolbar button by pointing the mouse to
the button without clicking.

1.3 Workspaces

A workspace is a collection of windows that are pertinent to
performing certain types of operations, such as editing,
execution, output, or debugging. The workspace windows can
be displayed from the Window menu.

2 Creating a Project

A project contains information about programs and their
dependent files, and it also stores and maintains the
properties of the IDE. To create and run a program, you have
to first create a project.

Here are the steps to create a demo project:

1. Choose File, New Project to display the New Project
dialog box, as shown in Figure 2.

2. Select General in the Categories section and Java
Application in the Projects section and click Next to
display the New Java Application dialog box, as shown
in Figure 3.

3. Type demo in the Project Name field and c:\michael in
Project Location field.

4. (Optional) You can create classes after a project is
created. Optionally you may also create the first
class when creating a new project. To do so, check the
Create Main Class box and type a class name, say
First, as the Main Class name.

5. Click Finish to create the project. The new project is
displayed, as shown in Figure 4.

© Copyright Y. Daniel Liang 4

Figure 2

The New Project dialog box enables you to specify a project
type.

Figure 3

The New Java Application prompts you to enter a project
name, location, and a main class name.

© Copyright Y. Daniel Liang 5

Figure 4

A new demo project is created.

3 Creating a Class

You can create any number of classes in a project. Here are
the steps to create Welcome.java in Listing 1.1 from Chapter
1 of the text in the demo project.

1. Right-click the top demo node in the project pane to
display a context menu, as shown in Figure 5. Choose
New, Java Class to display the New Java Class dialog
box, as shown in Figure 6.

2. Type Welcome in the Class Name field and select the
Source Packages in the Location field. Leave the
Package field blank. This will create a class in the
default package. (Note that it is not recommended to
use the default package, but it is fine to use the
default package to match the code in the book. Using
default package is appropriate for new Java students.
Section 10, “Using Packages,” will introduce how to
create a class in a non-default package.)

3. Click Finish to create the Welcome class, as shown in
Figure 7. The source code file Welcome.java is placed
under the <default package> node, because you did not
specify a package name for the class in Figure 6.

4. Modify the code in the Welcome class to match Listing
1.1, as shown in Figure 8.

© Copyright Y. Daniel Liang 6

Figure 5

You can create a new class in a project.

Figure 6

The New Java Class dialog box enables you to specify a class
name, location, and package name to create a new class.

© Copyright Y. Daniel Liang 7

Figure 7

A new Java class is created in the project.

Figure 8

The source code for Welcome.java is entered.

TIP

You can show line numbers in the Source Editor
by choosing View, Show Line Numbers from the
main menu.

NOTE

The source file Welcome.java is stored in
c:\michael\demo\src.

4 Compiling a Class

To compile Welcome.java, right-click Welcome.java to display
a context menu and choose Compile File, or simply press F9,
as shown in Figure 9.

© Copyright Y. Daniel Liang 8

The compilation status is displayed in the Output pane, as
shown in Figure 10. If there are no syntax errors, the
compiler generates a file named Welcome.class, which is
stored in c:\michael\demo\build\classes.

Figure 9

The Compile File command in the context menu compiles a
source file.

Figure 10

The compilation status is shown in the output pane.

Output pane

© Copyright Y. Daniel Liang 9

NOTE: When you compile the file, it will be
automatically saved.

NOTE: The icon for Java source code is . A
Java source code may have an additional icon ,
which indicates that the file is not compiled.
If the class has a main method, the icon is
after the class is compiled.

TIP: You can get descriptions of the node icons
from NetBeans Help. Choose Help, Help Contents
from the main window, and type Node Icons under
the Search tab to display the descriptions for
the icons, as shown in Figure 11.

Figure 11

You can get descriptions of the node icons in the project
pane from NetBeans Help.

5 Running a Java Application

To run Welcome.java, right-click Welcome.java to display a
context menu and choose Run File, or simply press Shift +
F6, as shown in Figure 12. The output is displayed in the
Output pane, as shown in Figure 13.

© Copyright Y. Daniel Liang 10

Figure 12

The Run File command in the context menu runs a Java
program.

Figure 13

The execution result is shown in the Output pane.

Output

© Copyright Y. Daniel Liang 11

NOTE: The Run File command invokes the Compile
File command if the program is not compiled or
was modified after the last compilation.

6 Running Book Examples

All the examples in the text can be downloaded from the
book’s Web site. To run them, copy the source code files
into c:\michael\demo\src. You will see the Java source code
files appearing under the <default package> node, as shown
in Figure 14. For example, to run ComputeLoan.java in
Chapter 2, select ComputeLoan.java in the project pane and
press Shift + F6.

Figure 14

You can run the examples in the text from the demo project.

If the program (e.g., ShowImage.java in Listing 14.9 in
Chapter 14 uses resources (e.g., image), you have to set the
project working directory to the resource directories.
Suppose you place the image files under
c:\michael\demo\build\classes, here are the steps to set the
working directory:

1. Right-click the demo project node to display a context
menu and choose Properties, as shown in Figure 15.

2. Select Running Project in the left section of the
project properties dialog box, as shown in Figure 16.
Enter C:\michael\demo\build\classes in the Working

© Copyright Y. Daniel Liang 12

Directory field.
3. Copy the image and audio folders to

c:\michael\demo\build\classes. Run ShowImage.java.

Figure 15

You can display Project Properties from the context menu of
the project node.

Figure 16

© Copyright Y. Daniel Liang 13

You can set properties for the project in the project
properties dialog box.

7 NetBeans's Online Help

NetBeans provides a large number of documents online, giving
you a great deal of information on a variety of topics
pertaining to the use of NetBeans.

To access online help, choose Help, Help Contents to display
NetBeans Help, as shown in Figure 17.

Figure 17

All help documents are displayed in NetBeans Help.

NetBeans Help behaves like a Web browser and contains the
toolbar buttons, navigation window, and content window. The
toolbar buttons contain four buttons: Previous, Next, Print,
and Print Setup. The Previous and Next buttons let you go to
the previous and next topics in the history list. The Print
button prints the document in the content window. The Print
Setup button enables you to set up the print layout.

The navigation window contains three tabs: Contents, Index,
and Search. The Contents tab displays available documents.
The table of contents of the document is displayed in a
tree-like list in the navigation window. To view a given
topic, select the node in the tree associated with the
topic. NetBeans Help displays the document for the topic in

© Copyright Y. Daniel Liang 14

the content window.

The Index tab shows the index entries for the current
document. The Search tab shows the combined index entries
for all the available documents in NetBeans.

8 Forcing a Program to Terminate

If a program does not terminate due to a logic error, you
can force it to terminate by clicking the Stop icon, as
shown in Figure 18.

Figure 18

You can force a program to terminate from the runtime pane.

9 Using Packages (Optional)

The Welcome class created in Section 3, “Creating a Class,”
does not have the package statement. If you want to create
classes with the package statement, you need to enter a
package name in the New Java Class wizard. Here are the
steps to create a new class Welcome in the package named
chapter1:

1. In the context menu of the demo project, choose New,
Java Class to display the New Java Class wizard, as
shown in Figure 19.

2. Type chapter1 in the Package field and click Finish to
create the template for the Welcome class, as shown in
Figure 20.

3. Welcome.java is created under package chapter1. The

© Copyright Y. Daniel Liang 15

first statement in the source code is

package chapter1;

Modify Welcome.java to match the code in Listing 1.1,
as shown in Figure 21.

4. Choose Run File from the context menu of Welcome.java
in the project pane to run the program.

Figure 19

You can enter a package name to create a class.

Figure 20

The new Welcome class is created under package chapter1.

Package
chapter1

Package
statement

© Copyright Y. Daniel Liang 16

Figure 21

The modified Welcome.java is shown in the Source Editor.

NOTE: The package in Java corresponds to the
directory in the file system. chapter1 is also a
directory. Welcome.java is stored in
c:\michael\demo\src\chapter1 and Welcome.class
is stored in
c:\michael\demo\build\classes\chapter1.

10 Run Java Applications from the Command Line

So far you have run programs in the NetBeans IDE. You can
also run program standalone directly from the operating
system. Here are the steps in running the Welcome
application with the default package created in Section 3
from the DOS prompt.

1. Start a DOS window by clicking the Windows Start
button, Programs, MS-DOS Prompt in Windows.
2. Type the following commands to set up the proper
environment variables for running Java programs in the
DOS environment in Windows:

set path=%path%;c:\Program Files\java\jdk1.6.0\bin
set classpath=.;%classpath%

3. Type cd c:\michael\demo\build\classes to change the
directory to c:\michael\demo\build\classes

 4. Type java Welcome to run the program. A sample run of
the output is shown in Figure 22.

Figure 22

© Copyright Y. Daniel Liang 17

You can run the Java program from the DOS prompt using the
java command.

NOTE: To run Welcome in the chapter1 package
created in Section 11, type java
chapter1.Welcome from the
c:\michael\demo\build\classes directory, as
shown in Figure 23.

Figure 23

If a class has the package statement, you have to specify
its full path, including the package name.

11 Debugging in NetBeans

The debugger utility is integrated in NetBeans. You can
pinpoint bugs in your program with the help of the NetBeans
debugger without leaving the IDE. The NetBeans debugger
enables you to set breakpoints and execute programs line by
line. As your program executes, you can watch the values
stored in variables, observe which methods are being called,
and know what events have occurred in the program.

The debugger is an indispensable, powerful tool that boosts
your programming productivity. It is also a valuable tool
for learning Java. It helps you understand how a program is
executed.

11.1 Setting Breakpoints

You can execute a program line by line to trace it, but this
is time-consuming if you are debugging a large program.
Often, you know that some parts of the program work fine. It
makes no sense to trace these parts when you only need to
trace the lines of code that are likely to have bugs. In
cases of this kind, you can use breakpoints.

A breakpoint is a stop sign placed on a line of source code
that tells the debugger to pause when this line is
encountered. The debugger executes every line until it
encounters a breakpoint. You can then trace the part of the
program at the breakpoint, quickly moving over the sections
that work correctly and concentrating on those causing

© Copyright Y. Daniel Liang 18

problems.

There are several ways to set a breakpoint. One quick way is
to click the cutter of the line on which you want to put a
breakpoint. You will see the line highlighted. You also can
set breakpoints by choosing Run, New Breakpoint. To remove a
breakpoint, simply click the cutter of the line.

When debugging a program, you can set as many breakpoints as
you want, and can remove breakpoints at any time during
debugging. The project retains the breakpoints when you exit
the project. They are restored when you reopen it.

11.2 Starting the Debugger

Let us use Listing 2.7, ShowCurrentTime.java, to demonstrate
debugging. Create a new class named ShowCurrentTime in the
default package in the demo project, as shown in Figure 24.

Figure 24

ShowCurrentTime.java is created in the project.

There are several ways to start the debugger. A simple way
is as follows:

 1. Activate ShowCurrentTime.java in the editor pane.

 2. Set a breakpoint at where you want your program to
pause, say Line 6. A breakpoint can be set by
clicking the cutter of the line, as shown in Figure
25. You can remove it by clicking on the cutter of
line again.

 3. In the context menu of ShowCurrentTime.java in the
project pane, choose Debug File. If the program
compiles properly, an output pane and debug pane will
be displayed, as shown in Figure 26. If the debug

© Copyright Y. Daniel Liang 19

pane is not shown, choose Window, Debugging, Local
Variables to display it.

Figure 25

Clicking the line number sets/removes a breakpoint at the
line in the source code.

Figure 26

The debugger starts to run ShowCurrentTime.java.

11.3 Controlling Program Execution

The program pauses at the breakpoint. The paused line is
highlighted in green. This line is also called the current
execution point, which points to next statement to be
executed by the debugger.

When the program pauses, you can issue debugging commands to
control the execution of the program. You also can inspect

Debugging
toolbar
buttons

Debugging
window

© Copyright Y. Daniel Liang 20

or modify the values of variables in the program.

When NetBeans is in the debugging mode, the toolbar buttons
for debugging are displayed, as shown in Figure 26. The
toolbar button commands also appear in the Run menu (see
Figure 27). Here are the commands for controlling program
execution:

 Start begins to debug the current program.

 Finish ends the current debugging session.

 Attach opens a dialog box in which you can connect the
debugger to an application on another virtual machine.
This is useful for remote debugging in distributed
systems.

 Pause temporarily stops execution of a program.

 Run to Cursor runs the program, starting from the
current execution point, and pauses and places the
execution point either on the line of code containing
the cursor or at a breakpoint.

 Step Over executes a single statement. If the statement
contains a call to a method, the entire method is
executed without stepping through it.

 Step Into executes a single statement or steps into a
method.

 Step Out executes all the statements in the current
method and returns to its caller.

 Continue resumes the execution of a paused program.

© Copyright Y. Daniel Liang 21

Figure 27

The debugging commands appear under the Run menu.

11.4 The Debugger Window

The Debugger window has tabbed panes for Local Variables,
Watches, and Call Stack, as shown in Figure 26. Other tabbed
such as Breakpoints, Sessions, and Threads can be added by
choosing Window, Debugging from the main menu. These panes
can be selected or deselected. The Sessions pane lists the
current debug sessions. The Breakpoints pane lists all the
breakpoints you have set. The Threads pane lists threads and
thread groups in the current debugging process. The Call
Stack pane lists the method calls that the process has made
since it began running. The Watches pane lists the variables
and expressions that are under continuous watch. The Local
Variables pane shows all the variables before the current
execution point in a local method. The Classes pane lists
all the classes that have been loaded by the process being
debugged.

11.5 Examining and Modifying Data Values
Among the most powerful features of an integrated debugger
is its capability to reveal current data values and enable
programmers to modify values during debugging. You can
examine the values of variables, array items, and objects,
or the values of the parameters passed in a method call. You
also can modify a variable value if you want to try a new
value to continue debugging without restarting the program.

The Local Variables pane lists all variables accessible at
the current execution point. The Watches pane lists the
selected variables.

12.5.1 The Add Watch Command

NetBeans provides the Add Watch command to enable you to add
variables to the Watches pane in the Debugger window. To add
the variable totalMilliseconds to the Watch view, perform
the following steps:
1. Suppose the execution point is currently at the first

line in the main method. Highlight totalMilliseconds
in the Source Editor and right-click the mouse to
reveal a context menu.

2. Choose New Watch in the context menu to bring up a
dialog box, as shown in Figure 28. Click OK to add
totalMilliseconds to the Watch list.

3. Choose the Watches tab in the Debugger window. The

© Copyright Y. Daniel Liang 22

variable along with its content is shown in Figure
29.

4. Choose Debug, Step Over to observe the changing value
of totalMilliseconds in the Watches pane.

Figure 28

The New Watch dialog box enables you to add a variable or an
expression to the Watch view.

Figure 29

The variable totalMilliseconds was added to the Watches tab.

NOTE:

You can also add expressions such as i > 0 to
the Watches tab from the Add New Watch dialog
box.

11.5.2 Modifying Variables

You can modify variables from the Watches pane or the
Variables pane. For instance, to change the value for
totalMilliseconds, enter a new value, say 1000, in the value
field for the variable and press the Enter key (See Figure
30).

© Copyright Y. Daniel Liang 23

Figure 30

The value for variable totalMilliseconds is changed to 1000.

A new value is
entered

