

© Copyright Y. Daniel Liang

Hints for the Python Revel Quizzes and Programming Projects

For Introduction to Python and Data Structures 2E by Y. Daniel Liang

If you see any errors or have comments or suggestions, please email me at y.daniel.liang@gmail.com.

Please check this page often. We update this page frequently in response to student questions. Last update:
2/22/2020.

NOTE: The quiz is a third-party product. Many end-of-section quizzes use a different naming convention
for variables and functions/methods. For example, it uses number_of_credits to name a variable and
get_radius() to name a getter method. But it would be named numberOfCredits and
getRadius() if the naming convention of this book is used.

Hints for End-of-Section Assignments (Programming Quizzes):

Chapter 4 Quiz 4.3 #3:
The newline character is covered in Section 4.3.3. Use '\n' for the newline character.

Chapter 4 Quiz 4.3 #4:
The tab character is covered in Section 4.3.3. Use '\t' for the tab character.

Hints for End-of-Chapter Assignments (Programming Projects):

Chapter 1: Programming Project 1: Exercise01_01
Hint:
Please check your spelling of the words carefully. It is case sensitive. The words are separated by exactly
one space.

Chapter 1: Programming Project 3: Exercise01_11
Hint:
In one year, the population will be
312032486 + 365 * 24 * 60 * 60 / 7 - 365 * 24 * 60 * 60 / 13 + 365 * 24 * 60 * 60 / 45
In two years, the population will be
312032486 + 2 * 365 * 24 * 60 * 60 / 7 - 2 * 365 * 24 * 60 * 60 / 13 + 2 * 365 * 24 * 60 * 60 / 45
You can compute the population in three years, four years, and five years.

Chapter 2: Programming Project 1: Exercise02_05
How would you write this program? Here are some hints:
Step 1: Prompt the user to enter subtotal (float) and gratuity (float) rate into variables subtotal and
gratuityRate. Note the gratuityRate is in percent. For example, if it is 15%, you enter 15 as the input for
gratuityRate.
Step 2: Compute gratuity: gratuity = subtotal * gratuityRate / 100.
Step 3: Compute total: total = subtotal + gratuity.
Step 4: Display gratuity and total. Note you need to first display gratuity and then total. For all the
programming projects, please pay attention to output order.

Chapter 2: Programming Project 2: Exercise02_07
Hint: You must use integers in this program. Use
int(input("Enter the number of minutes: "))

to obtain the input. See LiveExample 2.4 in Section 2.8.2 for reference.

mailto:y.daniel.liang@gmail.com

© Copyright Y. Daniel Liang

Now, the key to solve this problem is to use the correct math.
Step 1: Get the totalNumberOfDays from the minutes (i.e., totalNumberOfDays = minutes // (24 * 60)).
Step 2: Get the numberOfYears from the numberOfDays (i.e., numberOfYears = numberOfDays // 365).
Step 3: Get the remainingNumberOfDays from totalNumberOfDays (i.e., remainingNumberOfDays =
totalNumberOfDays % 365).

Chapter 2: Programming Project 3: Exercise02_13
Use integer in this program.
Hint: The last digit of number is number % 10. Discard last digit is number using number // 10.

Chapter 2: Programming Project 4: Exercise02_04Extra
Use float numbers in this program.

Chapter 2: Programming Project 5: Exercise02_19
Hint: Prompt the user to enter investmentAmount (float), annualInterestRate (float), and numberOfYears
(int), and apply the formula to compute the accumulatedValue.

The annualInterestRate is entered in percentage. In the formula, you need to use monthlyInterestRate,
which is annualInterestRate / 1200. See LiveExample 2.8 in Section 2.14 for reference.

Chapter 3: Programming Project 1: Exercise03_01
There are typos in the description. For the correct description, please see Exercise 3.1 in the Programming
Exercise from the Book section in Chapter 3 from the TOC.
How would you write this program? Here are some hints:
Step 1: Prompt the user to enter a, b, c. All are float numbers.
Step 2: Compute discriminant.
Step 3: if discriminant < 0, display an error message.
Step 4: elif discriminant == 0, compute and display one root.
Step 5: else compute and display two roots.

Common errors from this project: In Step 1, your code should read in float values. In Step 2,
discriminant is discriminant = b * b – 4 * a * c. In Step 5, please note that root1 is r1 = (-b + discriminant
** 0.5) / (2 * a). Another common mistake is to compute the roots before the if statement. Please compute
roots in Step 5.

Chapter 3: Programming Project 2: Exercise03_03
How would you write this program? Here are some hints:
Step 1: Prompt the user to enter a, b, c, d, e, f. All are float numbers.
Step 2: Compute detA = a * d – b * c.
Step 3: if detA == 0, display an error message.
Step 4: else compute x and y, and display the result.

Common errors from this project: A common mistake is to compute x and y before the if
statement. Please compute x and y in Step 4.

Chapter 3: Programming Project 3: Exercise03_11
Prompt the user to enter year (int) and test if year is a leap year.
Hint: To test if a year is a leap year, see Section 3.11.

Chapter 3: Programming Project 4: Exercise03_21
Hint: Prompt the user to enter year, month, and dayOfMonth. Note that all input are integers. You need to
adjust year and month as follows:
if month is 1, set month = 13 and year = year – 1.
if month is 2, set month = 14 and year = year – 1.
You can now use Zeller’s formula to compute h:

© Copyright Y. Daniel Liang

()26 1
5 % 7

10 4 4
m k jh q k j
+ 

= + + + + + 
 

Chapter 3: Programming Project 5: Exercise03_23
All the input are float numbers.
Hint: A point (x, y) is in the rectangle centered at (0, 0) with width 10 and height 5 if |x| <= 5 and |y| <=
2.5. That is, x <= 5 and x >= -5 and y <= 2.5 and y >= -2.5.

Chapter 4: Programming Project 1: Exercise04_55
Hint: Prompt the user to enter the numberOfSides (int) and the lengthOfSide (float) of a polygon, and apply
the formula to compute the area of the polygon.

Chapter 4: Programming Project 2: Exercise04_23
Hint: Prompt the user to enter a character for grade, and test if it is A/a, B/b, C/c, D/d, F/f and display its
corresponding value, otherwise displays “invalid grade”.

Chapter 4: Programming Project 3: Exercise04_25
Hint: Prompt the user to enter year (int) and month (str), and displays the number of days in the month. To
test if a year is a leap year, see Section 3.11.

Chapter 4: Programming Project 4: Exercise04_29
How would you write this program? Here are some hints:
Step 1: Prompt the user to enter the first 9-digit of an ISBN number as a string into s.
Step 2: Write a if/else statement. If len(s) is not 9 or s.isdigit() is False, display "Incorrect input".
Step 3: else compute the checksum as follows:
Step 3.1: Compute checksum = (d1 * 1 + d2 * 2 + d3 * 3 + d4 * 4 + d5 * 5 + d6 * 6 + d7 * 7 + d8 * 8 + d9
* 9) % 11
Note d1 = ord(s[0]) – ord('0') and d2 = ord(s[0]) – ord('0'), etc.
Step 3.2: Use an if/else statement to get the checksum character: if checksum is 10, the character is X,
otherwise it is checksum itself.

Chapter 4: Programming Project 5: Exercise04_31
Hint: Read a hex character into hex. Convert it into an uppercase using hex.upper(). Test if hex is '0', …, '9',
'A', …, 'F' to display the corresponding binary number.

Chapter 5: Programming Project 1: Exercise05_01
How would you write this program? Here are some hints:
Step 1: Initialize variables. Your program needs to count the number of positives, number of negatives, and
total. Think about what initial values are appropriate for these variables. Note that the average can be
computed using total / (numberOfPositives + numberOfNegatives).
Step 2: Prompt the user to read a number into variable number.
Step 3: Write a while loop to do the following:
Step 3.1: the loop continuation condition is (number =! 0)
Step 3.2: If number > 0, increase numberOfPositives by 1; if number < 0, increase numberOfNegatives by
1.
Step 3.3: Add number to total.
Step 3.4: Prompt the user to a new input and assign it to number.
Step 4: After the loop is finished, if (numberOfPositives + numberOfNegatives == 0), this means “No
numbers are entered except 0”. Your program should display exactly this message. Otherwise, display the
number of positives, negatives, and average. To compute average, use total / (numberOfPositives +
numberOfNegatives).

Chapter 5: Programming Project 2: Exercise05_09
How would you write this program? Here are some hints:
First, I suggest that you to read Section 5.9.2. This section will give you half of the solution.

© Copyright Y. Daniel Liang

Step 1: Note that the current year tuition is 10000. In one year (same as to say after the first year), the
tuition will be tuition += tuition * 1.05 (10500). Compute the tuition in 10 years using a loop and save the
result in variable tuition. This will be the tuition in 10 years. Check your result. It should be 16288.95.
Step 2: Now compute the tuition after the 11th year, 12th year, 13th year. The tuition after the 10th year is
16288.95. The sum of the tuition after the 10th, 11th, 12th, and 13th is the total cost of four years tuition in ten
years (same as to say after the 10th year).

Chapter 5: Programming Project 3: Exercise05_11
Note that we assume that the number of students is at least 2. So, your program does not need to consider
the case for one or no students.
How would you write this program? Here are some hints:
Step 1: Prompt the user to read the number of the students into variable numberOfStudents (int).
Step 2: Prompt the user to read first student name into student1 (str).
Step 3: Prompt the user to read first student score into score1 (float).
Step 4: Prompt the user to read second student name into student2 (str).
Step 5: Prompt the user to read second student score into score2 (float).
Step 6: If score1 < score2, swap student1 with student2 and score1 with score2. Throughout the program,
we will use student1 and score1 to store the student name and score with the highest score and student2 and
score1 to store the student name and score with the second highest score.
Step 7: Now write a loop to read the next student name and score. Consider the following cases:
Step 7.1: if score > score1, assign score1 to score2 and score to score1, student1 to student2 and name to
student.
Step 7.2: else if score1 > score2, assign score to score2 and name to student2.
Step 8: Display the top two students’ name and score.

Chapter 5: Programming Project 4: Exercise05_23
For this program, you need to use the formula for computing monthlyPayment and totalPayment in Section
2.14.
How would you write this program? Here are some hints:
Step 1: Prompt the user to read loanAmount (float) and numberOfYears (int).
Step 2: Print the header using the format function, "Interest Rate", "Monthly Payment", "Total Payment";
Step 3: Write a while loop as follows:
Step 3.1: Before the loop, Initialize annualInterestRate to 5.0.
Step 3.2: The loop continuation condition is <= 8.0.
Step 3.3: In the loop body, compute monthlyPayment and totalPayment using the formula. Note the
monthlyInterestRate is annualInterestRate / 1200. Display annualInterestRate, monthlyPayment, and
totalPayment in one line using the format function to format the output. Please note: in the first column,
you need to put three digits after the decimal point. For example, 5.000% is correct, but 5% is wrong.
Step 3.4: Don’t forget: annualInterestRate += 1.0/ 8 in the loop.

Chapter 5: Programming Project 5: Exercise05_59
How would you write this program? Here are some hints:
Step 1: Initialize variables numberOfVowels and numberOfConsonants with 0.
Step 2: Prompt the user to enter a string.
Step 3: For each character in the string, do the following:
Step 3.1: Convert the character to uppercase.
Step 3.2: If the character is 'A', 'E', 'I', 'O', or 'U', increase numberOfVowels by 1.
Step 3.3: else if the character is a letter, increase numberOfConsonants by 1.
Step 4: Display the result using the wording as shown in the sample output.

Chapter 5: Programming Project 6: Exercise05_57
How would you write this program? Here are some hints:
Step 1: Prompt the user to enter the first 12 digits of an ISBN-13 into a string s.
Step 2: If the length of the input is not 12, exit the program using sys.exit().

© Copyright Y. Daniel Liang

Step 3: Initialize variable sum. (In Step 4, we will compute sum. sum will be d1 + 3*d2 + d3 + 3*d4
+…+d11 + 3*d12. Note d1 is s[0], d2 is s[1], etc.)
Step 4: for each i from 0 to len(s) – 1, do the following:
Step 4.1: If (i % 2 is 0), add (ord(s[i]) - ord('0')) to sum.
Step 4.2: else, add (ord(s[i]) - ord('0')) * 3 to sum.
Step 5: Obtain checksum that is 10 – sum % 10.
Step 6: Display the entire ISBN-13 string whose last digit is checksum. Note that if checksum is 10, display
digit 0.

Chapter 6: Programming Project 1: Exercise06_13
How would you write this program? Here are some hints:
The program has two functions: the main function and the m(i) function.
Step 1: Implement the m(i) function to return the summation as shown in the formula for m(i) given in the
description.
Step 1.1: Initialize sum with 0.
Step 1.2: for each k from 1 to i, add k / (k + 1) to sum.
Step 1.3: return sum.
Step 2: Implement the main function as follows:
Step 2.1: Display the header of the table using the format function. The header is “i m(i)”.
Step 2.2: Write a for loop as follows: for each i from 1 to 20, display i and the result from invoking m(i).
The result of m(i) is displayed with four digits after the decimal point. So, 0.5 should be displayed 0.5000
using the format function.

Chapter 6: Programming Project 2: Exercise06_07
How would you write this program? Here are some hints:
The program has two functions: the main function and the futureInvestmentValue function.
Step 1: Implement the futureInvestmentValue function to compute the futureInvestment value from
investmentAmount, monthlyInterestRate and years using the formula from Exercise 2.19 in Chapter 2. This
function return futureInvestmentValue.
Step 2: Implement the main function as follows:
Step 2.1: Prompt the user to enter investmentAmount (float) and annualInterestRate (float).
Step 2.2: Write a for loop as follows: for each year from 1 to 30, display year and the result from invoking
futureInvestmentValue(investmentAmount, annualInterestRate / 1200, year). You need to use the format
function to display formatted output.

Chapter 6: Programming Project 3: Exercise06_53
How would you write this program? Here are some hints:
The program has two functions: the main function and the count(s, a) function.
Step 1: Implement the count(s, a) as follows:
Step 1.1: Initialize count.
Step 1.2: for each i from 1 to len(s) - 1, if s[i] == a, increase count by 1.
Step 1.3: return count.
Step 2: Implement the main function as follows:
Step 2.1: Prompt the user to enter a string s.
Step 2.2: Prompt the user to enter a char.
Step 2.3: Simply invoke count(s, ch) to return the count and display the result as shown in the sample run.

Chapter 6: Programming Project 4: Exercise06_23
First, please read Listing 2.7 ShowCurrentTime.java in Section 2.13. This is very helpful for this exercise.
How would you write this program? Here are some hints:
The program has two functions: the main function and the convertMillis(long millis) function.
Step 1: Implement the convertMillis(millis) function as follows:
Step 1.1: Obtain seconds from millis.
Step 1.2: Obtain totalMinutes from seconds.
Step 1.3: Obtain minutes from totalMinutes % 60.
Step 1.4: Obtain totalHours from totalMinutes // 60.
Step 1.5: Return a string: hours + ":" + minutes + ":" + seconds.

© Copyright Y. Daniel Liang

Step 2: Implement the main function as follows:
Step 2.1: Prompt the user to enter an integer into variable totalMillis.
Step 2.2: Invoke convertMillis(totalMillis) to return a string.
Step 2.3: Display this string.

Chapter 6: Programming Project 5: Exercise06_02Extra
As always, there are many ways to solve a problem. An easy way might be first convert the binary to
decimal and then convert the decimal to hex. Converting a decimal to hex is covered in Section 5.9.3.
Converting a binary number to decimal is similar to converting a hex to decimal, which is covered in
Section 6.12.

Chapter 7: Programming Project 1: Exercise07_01
How would you write this program? Here are some hints:
Step 1: Enter the scores in one line separated by spaces.
Step 2: Split the line into a list items and get scores from the items using list comprehension. The scores are
float numbers.
Step 3: Initialize variable best to keep the best score. Set the initial value to 0.
Step 4: For each score: compare it with best. If it is greater than best, assign it to best.
Step 5: For each score, compare it with best, assign the grade for the student.

Chapter 7: Programming Project 2: Exercise07_03
How would you write this program? Here are some hints:
Step 1: Enter the numbers in one line separated by spaces.
Step 2: Split the line into a list items and get numbers from the items using list comprehension. Numbers
are integers.
Step 3: Create list counts with 100 elements. The initial values in counts are 0.
Step 4: For each value in numbers, update counts.
Step 5: For each value in counts, display the value and its count. Note the 0 count is not displayed. Single
count is displayed in word “time”, and multiple count is displayed in word “times”.

Chapter 7: Programming Project 3: Exercise07_05
How would you write this program? Here are some hints:
Step 1: Enter the numbers in one line separated by spaces.
Step 2: Split the line into a list list1. Numbers are integers.
Step 3: Create a new empty list list2.
Step 4: For each number in list1, if it is not in list2, add to list2.
Step 5: list2 now contains the distinct numbers from list1.

Chapter 7: Programming Project 4: Exercise07_09
How would you write this program? Here are some hints:
Step 1: Implement the mean(x) function as follows: return sum(x) / len(x)
Step 2: Implement the deviation(xe) function as follows:
Step 2.1: Initialize squareSum.
Step 2.2: Write a loop. For each value in x, add (value – mean(x)) ^ 2 to squareSum.
Step 2.3: return sqrt(squareSum / (x.length – 1))
Step 3: Implement the main function as follows:
Step 3.1: Enter the numbers in one line separated by spaces. Numbers are float numbers.
Step 3.2: Split the line into a list and get numbers using list comprehension.
Step 3.3: Invoke mean(numbers) and deviation(numbers) to obtain mean and deviation for numbers.

Chapter 7: Programming Project 5: Exercise07_15
How would you write this program? Here are some hints:
Step 1: Implement the isSorted(numbers) function as follows:
Step 1.1: Write a for loop: for i from 0 to len(numbers) – 1, if (numbers[i] > numbers[i + 1]), return false.
Step 1.2: If nothing is return in the for loop, return true after the for loop.
Step 2: Implement the main function as follows:
Step 2.1: Enter the numbers in one line separated by spaces. Numbers are float numbers.

© Copyright Y. Daniel Liang

Step 2.2: Split the line into a list numbers.
Step 3: Invoke isSorted(numbers) to test if the elements in list are sorted.

Chapter 7: Programming Project 6: Exercise07_17
How would you write this program? Here are some hints:
Step 1: Implement the main() function as follows:
Step 1.1: Read string s1.
Step 1.2: Read string s2.
Step 1.3: Invoke isAnagram(s1, s2) to test if s1 and s2 are anagrams.
Step 2: Implement the isAnagram(s1, s2) function as follows:
Step 2.1: If s1 and s2 have different sizes, return false.
Step 2.2: Sort s1 and s2 and return true if they are the same.
Step 3: Implement the sort(s) function to sort a string as follows:
Step 3.1: Obtain a list from s simply using list(s).
Step 3.2: Sort the list.
Step 3.3: Create a string from the list and return the string.

Chapter 8: Programming Project 1: Exercise08_01
How would you write this program? Here are some hints:
Step 1: Implement the sumColumn(m, columnIndex)function as follows:
Step 1.1: Initialize sum.
Step 1.2: Write a for loop: for i from 0 to 3 - 1, add m[i][columnIndex] to sum. Note that the row size is 3.
Step 1.3: Return sum.
Step 2: Implement the main function as follows:
Step 2.1: Create a list m = [].
Step 2.2: Write a for loop to prompt the user to enter a row as a string. Extract the numbers (float) in the
row to create a list. Add this list to m.
Step 2.3: Write a for loop. For each j from 0 to 4 - 1, invoke sumColumn(m, j) and display it. Note that the
column size is 4.
Hint: Make sure you use the correct row and column size. The matrix has 3 rows and 4 columns.

Chapter 8: Programming Project 2: Exercise08_05
How would you write this program? Here are some hints:
Step 1: Implement the addMatrix(m1, m2) function as follows:
Step 1.1: Create a two-dimensional list m3 of the same size as m1.
Step 1.2: Write a nested for loop to assign m1[i][j] + m2[i][j] to m3[i][j].
Step 1.3: Return m3.
Step 2: Implement the printResult(m1, m2, m3, op) function as follows:
Step 2.1: For each row i from len(m1), display a row in m1, m2, and m3. In the row middle, display the op
between m1 and m2 and display the = symbol between m2 and m3.
Step 3: Implement the main function as follows: (numbers are float)
Step 3.1: Create list m1. Enter input for m1 in a loop one row at a time.
Step 3.2: Create list m2. Enter input for m2 in a loop one row at a time.
Step 3.3: Create list m3. Invoke m3 = addMatrix(m1, m2).
Step 3.4: Display the result by invoking printResult(m1, m2, m3)

Chapter 8: Programming Project 6: Exercise08_35
How would you write this program? Here are some hints:
Step 1: Implement the main function.
Step 1.1: Prompt the user to enter the coordinates for the cities. cities is a two-dimensional list. Numbers
are float.
Step 1.2: Use list comprehension to obtain a two-dimensional list for cities. Each list in cities is a pair of
coordinates.
Step 1.3: Initialize minTotal and minIndex to store the minimum total distance and the index of the
minimum total distance city. minTotal is totalDistance(cities, 0) and minIndex is 0.
Step 1.4: For every city with index i, invoke totalDistance(cities, i) to return the totalDistance. If it is <
minTotal, assign totalDistance to minTotal and i to minIndex.

© Copyright Y. Daniel Liang

Step 1.5: Display the (cities[minIndex][0], cities[minIndex][1]) and minTotal for the central city.
Step 2: Implement distance(c1, c2). This function returns the distance between (c1[0], c1[1]) and (c2[0],
c2[1]).
Step 3: Implement and totalDistance(cities, i). This function returns the total distance from city i to all other
cities.

Chapter 9: Programming Project 1: Exercise09_01
Please note that you have to put all code in one file in order to submit to REVEL. The outline of the
program may look like this:

Exercise09_01

class Rectangle:

Write your code

def main():

Write your code

main()

Chapter 9: Programming Project 2: Exercise09_05
Please note that you have to put all code in one file in order to submit to REVEL. The outline of the
program may look like this:

Exercise09_05

import math

class RegularPolygon:

Write your code

def main():

Write your code

main()

Chapter 9: Programming Project 3: Exercise09_11
Please note that you have to put all code in one file in order to submit to REVEL. The outline of the
program may look like this:

Exercise09_11

class Point:

Write your code

def main():

Write your code

main()

Chapter 9: Programming Project 4: Exercise09_15
Please note that you have to put all code in one file in order to submit to REVEL. The outline of the
program may look like this:

Exercise09_15

© Copyright Y. Daniel Liang

class Complex:

 def __init__(self, a = 0, b = 0):

 # Implement it

 def getA(self):

 # Implement it

 def getB(self):

 # Implement it

 def __add__(self, secondComplex):

 # Implement it

 def __sub__(self, secondComplex):

 # Implement it

 def __mul__(self, secondComplex):

 # Implement it

 def __truediv__(self, secondComplex):

 # Implement it

 def __abs__(self):

 # Implement it

 def __str__(self):

 # Implement it

 def getRealPart(self):

 # Implement it

 def getImaginaryPart(self):

 # Implement it

def main():

 a = float(input("Enter the real part of the first complex number: "))

 b = float(input("Enter the imaginary part of the first complex number: "))

 c1 = Complex(a, b)

 c = float(input("Enter the real part of the second complex number: "))

 d = float(input("Enter the imaginary part of the second complex number: "))

 c2 = Complex(c, d)

 print(c1, "+", c2, "=", c1 + c2)

 print(c1, "-", c2, "=", c1 - c2)

 print(c1, "*", c2, "=", c1 * c2)

 print(c1, "/", c2, "=", c1 / c2)

 print("|" + str(c1) + "| = " + str(abs(c1)))

© Copyright Y. Daniel Liang

main()

Chapter 12: Programming Project 1: Exercise12_01
Please note that you have to put all code in one file in order to submit to REVEL. The outline of the
program may look like this:

Exercise12_01

import math

def main():

Write your code

class GeometricObject:

Copy the code from the book

class Triangle(GeometricObject):

Write your code

main()

Chapter 12: Programming Project 2: Exercise12_25
Please note that you have to put all code in one file in order to submit to REVEL. The outline of the
program may look like this:

Exercise12_25

class MyList(list):

Write your code

def main():

 list1 = MyList()

 list1.append("Chicago")

 list1.append("Detroit")

 list1.append("Denver")

 list1.append("Chicago")

 list1.append("Atlanta")

 list1.append("New York")

 list1.append("Seattle")

 list1.append("Dallas")

 list1.append("Atlanta")

 list1.append("New York")

 print(list1)

 index = int(input("Enter index: "))

 element = input("Enter element: ")

 print("The index of element", element, "after index", index,

 "is", list1.indexOf(element, index))

 print("The index of last element", element, "before index", index,

 "is", list1.lastIndexOf(element, index))

© Copyright Y. Daniel Liang

main()

Chapter 13: Programming Project 1: Exercise13_03
Due to my server security restriction, the user is not allowed to read/write files on the server. You cannot
test Exercise13_03 from CheckExercise. However, you can test your code using scores1.txt and scores2.txt.
Download these two files and save them as scores1.txt and scores2.txt in the same directory of your .py
file. If your output matches the following two screen shots (character by character), your code is correct.
You can then submit it to REVEL.

Note: Use s.split() to split the numbers in a string separated by whitespace characters. Don’t use s.split(' ').
If s = "1 2 3\n", s.split() will ['1', '2', '3'], but s.split(' ') will be ['1', '2', '3\n'].

Chapter 13: Programming Project 2: Exercise13_06Extra
Due to my server security restriction, the user is not allowed to read/write files on the server. You cannot
test Exercise13_06Extra from CheckExercise. However, you can test your code using string1.txt and
string2.txt. Download these two files and save them as scores1.txt and scores2.txt in the same directory of
your .py file. If your output matches the following two screen shots (character by character), your code is
correct. You can then submit it to REVEL.

Chapter 14: Programming Project 3: Exercise14_05Extra
Here are Python keywords from Appendix A.
 keyWords = {"and", "del", "from", "not", "while",

 "as", "elif", "global", "or", "with",

 "assert", "else", "if", "pass", "yield",

 "break", "except", "import", "print",

 "class", "exec", "in", "raise",

 "continue", "finally", "is", "return",

 "def", "for", "lambda", "try"}

https://liangpy.pearsoncmg.com/test/scores1.txt
https://liangpy.pearsoncmg.com/test/scores2.txt

© Copyright Y. Daniel Liang

Chapter 15: Programming Project 1: Exercise15_01
Hint:
The program contains the main function and the sumDigits(n). The main function prompts the user for the
input number n. It then invokes sumDigits(n) to return the sum of the digits in n.

sumDigits(n) returns n if n is a single digit. Otherwise, it returns sumDigits(n // 10) + sumDigits(n % 10). n
% 10 is the last digit in n. n // 10 is the remaining number after removing the last digit.

Chapter 15: Programming Project 4: Exercise15_13
Hint:
The program contains the main function and two overloaded count functions. The main function prompts
the user for the input string and then a character. It then invokes the count(const string& s, char a) function.

The count(const string& s, char ch) function invokes count(s, ch, s.length() - 1).

The count(s, ch, high) is a recursive helper function. The function returns 0 if high < 0. Otherwise, it
returns count(s, ch, high - 1) + (s[high] == ch ? 1 : 0).

Chapter 15: Programming Project 5: Exercise15_19
Hint:
For simplicity, you can assume that the decimal integer is greater than 0. Your submission will work with
this assumption.

The program contains the main function and the decimalToBinary function. The main function prompts the
user to enter an integer then invokes the decimalToBinary(int) to return a binary string for the integer. It
displays the binary string.

The decimalToBinary(value) function returns "" if value is 0, otherwise, it returns decimalToBinary(value
// 2) + str(value % 2).

Note that decimalrBinary(value // 2) returns a string. value % 2 is 0 or 1.

Chapter 18: Programming Project 1: Exercise18_01
Use the code from https://liangpy.pearsoncmg.com/test/Exercise18_01.txt as a template to complete
this program. You need to code the MyLinkedList class. You can check your code using the CheckExercise
tool and then submit it to REVEL. When you use the CheckExercise tool, submit the entire code. When
you submit it to REVEL, only select the code that is enclosed between the BEING SUBMISSION
comment line and the END SUBMISSION comment line in the template.

Chapter 18: Programming Project 2: Exercise18_03
Hint: You need to submit the entire program for this exercise. Your program will likely exceed 5000
characters. To allow it to be submitted, you need to remove the comments, space lines, may even to reduce
the tab space to reduce the size to 5000 characters.

Chapter 18: Programming Project 4: Exercise18_01Extra
Use the code from https://liangpy.pearsoncmg.com/test/Exercise18_01Extra.txt as a template to
complete this program. You can check your code using the CheckExercise tool and then submit it to
REVEL. When you use the CheckExercise tool, submit the entire code. When you submit it to REVEL,
only select the code that is enclosed between the BEING SUBMISSION comment line and the END
SUBMISSION comment line in the template.

Hint:
Study the code in LiveExample 18.13 in Section 18.8 using some samples, for example, 1+2, 2 * 3 - 3, etc.
Modify the example EvaluateExpression.java incrementally. Once step at a time and you will know which
step you are struggling.
Step 1. The operator % can be implemented similar to the * and / operators. Add the code for processing %
in lines 39-47 in LiveExample 18.13.

https://liangpy.pearsoncm.com/test/Exercise18_01.txt
https://liangpy.pearsoncmg.com/test/Exercise18_01Extra.txt

© Copyright Y. Daniel Liang

Step 2. The operator ^ has the highest precedence. However, note that the ^ operator is right-associative,
meaning that 2 ^ 3 ^ 2 is same as 2 ^ (3 ^ 2). In lines 51-61 in LiveExample 18.13, the program processes
the * and / operators, add the code for processing the ^ operator after this block.

Chapter 19: Programming Project 1: Exercise19_01
Use the code from https://liangpy.pearsoncmg.com/test/Exercise19_01.txt as a template to complete
this program. You need to code the MyBST class. You can check your code using the CheckExercise tool
and then submit it to REVEL. When you use the CheckExercise tool, submit the entire code. When you
submit it to REVEL, only select the code that is enclosed between the BEING SUBMISSION comment
line and the END SUBMISSION comment line in the template.

Hint:
For the definition of the height of a binary tree, see Section 19.2. Use recursion. If the tree is empty (i.e.,
root is None), return -1, else return 1 + the max of the height of the left and right subtrees.

Chapter 19: Programming Project 2: Exercise19_03
Use the code from https://liangpy.pearsoncmg.com/test/Exercise19_03.txt as a template to complete
this program. You need to code the MyBST class. You can check your code using the CheckExercise tool
and then submit it to REVEL. When you use the CheckExercise tool, submit the entire code. When you
submit it to REVEL, only select the code that is enclosed between the BEING SUBMISSION comment
line and the END SUBMISSION comment line in the template.

Hint:
Copy the height() method from the preceding project. You can compare the tree size with 2^(height+1) –
1 to determine if the tree is perfect.

Chapter 19: Programming Project 3: Exercise19_07
Use the code from https://liangpy.pearsoncmg.com/test/Exercise19_07.txt as a template to complete
this program. You need to code the MyBST class. You can check your code using the CheckExercise tool
and then submit it to REVEL. When you use the CheckExercise tool, submit the entire code. When you
submit it to REVEL, only select the code that is enclosed between the BEING SUBMISSION comment
line and the END SUBMISSION comment line in the template.

Hint:
Use recursion. If the tree is empty (i.e., root is None), return 0, else return 1 + the number of the non-leaf
nodes in the left subtree + the number of the non-leaf nodes in the right subtree.

Chapter 19: Programming Project 4: Exercise19_11
Use the code from https://liangpy.pearsoncmg.com/test/Exercise19_11.txt as a template to complete
this program. You need to code the MyBST class. You can check your code using the CheckExercise tool
and then submit it to REVEL. When you use the CheckExercise tool, submit the entire code. When you
submit it to REVEL, only select the code that is enclosed between the BEING SUBMISSION comment
line and the END SUBMISSION comment line in the template.

Chapter 19: Programming Project 5: Exercise19_01Extra
Use the code from https://liangpy.pearsoncmg.com/test/Exercise19_01Extra.txt as a template to
complete this program. You need to code the MyBST class. You can check your code using the
CheckExercise tool and then submit it to REVEL. When you use the CheckExercise tool, submit the entire
code. When you submit it to REVEL, only select the code that is enclosed between the BEING
SUBMISSION comment line and the END SUBMISSION comment line in the template.

Chapter 20: Programming Project 1: Exercise20_07

https://liangpy.pearsoncmg.com/test/Exercise19_01.txt
https://liangpy.pearsoncmg.com/test/Exercise19_03.txt
https://liangpy.pearsoncmg.com/test/Exercise19_07.txt
https://liangpy.pearsoncmg.com/test/Exercise19_11.txt
https://liangpy.pearsoncmg.com/test/Exercise19_01Extra.txt

© Copyright Y. Daniel Liang

Use the code from https://liangpy.pearsoncmg.com/test/Exercise20_07.txt as a template to complete
this program. You need to code the MyBST class. You can check your code using the CheckExercise tool
and then submit it to REVEL. When you use the CheckExercise tool, submit the entire code. When you
submit it to REVEL, only select the code that is enclosed between the BEING SUBMISSION comment
line and the END SUBMISSION comment line in the template.

Chapter 21: Programming Project 1: Exercise21_01
Hint: Your program will likely exceed 5000 characters. To allow it to be submitted, you need to remove the
comments, space lines, may even to reduce the tab space to reduce the size to 5000 characters.

Chapter 22: Programming Project 1: Exercise22_01Extra
Use the code from https://liangpy.pearsoncmg.com/test/Exercise22_01Extra.txt as a template to
complete this program. You need to code the main function and call the main function. You can check your
code using the CheckExercise tool and then submit it to REVEL. When you use the CheckExercise tool,
submit the entire code. When you submit it to REVEL, only select the code that is enclosed between the
BEING SUBMISSION comment line and the END SUBMISSION comment line in the template.

Chapter 22: Programming Project 2: Exercise22_05
Use the code from https://liangpy.pearsoncmg.com/test/Exercise22_05.txt as a template to complete
this program. You need to code the MyGraph class. You can check your code using the CheckExercise tool
and then submit it to REVEL. When you use the CheckExercise tool, submit the entire code. When you
submit it to REVEL, only select the code that is enclosed between the BEING SUBMISSION comment
line and the END SUBMISSION comment line in the template.

Chapter 23: Programming Project 1: Exercise23_01Extra
Use the code from https://liangpy.pearsoncmg.com/test/Exercise23_01Extra.txt as a template to
complete this program. You need to code the main function and call the main function. You can check your
code using the CheckExercise tool and then submit it to REVEL. When you use the CheckExercise tool,
submit the entire code. When you submit it to REVEL, only select the code that is enclosed between the
BEING SUBMISSION comment line and the END SUBMISSION comment line in the template.

Chapter 23: Programming Project 1: Exercise23_02Extra
Use the code from https://liangpy.pearsoncmg.com/test/Exercise23_02Extra.txt as a template to
complete this program. You need to code the main function and call the main function. You can check your
code using the CheckExercise tool and then submit it to REVEL. When you use the CheckExercise tool,
submit the entire code. When you submit it to REVEL, only select the code that is enclosed between the
BEING SUBMISSION comment line and the END SUBMISSION comment line in the template.

https://liangpy.pearsoncmg.com/test/Exercise20_07.txt
https://liangpy.pearsoncmg.com/test/Exercise22_01Extra.txt
https://liangpy.pearsoncmg.com/test/Exercise22_05.txt
https://liangpy.pearsoncmg.com/test/Exercise23_01Extra.txt
https://liangpy.pearsoncmg.com/test/Exercise23_02Extra.txt

